Смесительный узел для теплого пола

Устройство и работа насосно-смесительного узла теплого пола

Системы водяного подогрева полов (вторичного контура отопления, теплые полы — ТП), используемые совместно высокотемпературным радиаторным отоплением (первичным контуром), нуждаются в приведении параметров теплоносителя к определенным характеристикам. В первую очередь, это касается гидравлической и температурной увязки контуров обоих типов. Ведь важно обеспечить как полноценное снабжение теплоносителем в требуемых объемах коммуникаций ТП, так и не допустить перегрева вторичной низкотемпературной системы. Эти задачи возлагаются на насосно-смесительный узел теплого пола (НСУ). Они решаются посредством сбалансированной автоматической работы запорно-регулирующей арматуры и насосного агрегата, обеспечивающей дозированный подмес теплоносителя из обратной линии.

Рисунок 1

Требования к температуре теплононосителя

НСУ теплого пола является достаточно сложным комплектом оборудования, от грамотной сборки и настройки которого во многом зависит правильность функционирования всей тепловой установки. Например, если котел спроектирован на подачу теплоносителя 70-90 0 С в радиаторы, то, в параллельно работающих в этих же помещениях контурах напольного обогрева, температура циркулирующей жидкости допускается не выше 45-50 0 С (max 55 0 С). Точные температурные параметры выводятся путем инженерных расчетов системы теплого пола. Они призваны обеспечить подготовку воды в НСУ таким образом, чтобы прогрев напольных поверхностей, с учетом структуры и материала их покрытий, не превышал:

  • в помещения с долговременным пребыванием людей (офисах, жилых) – 29 0 С;
  • во вспомогательных помещениях (кладовых, коридорах, гардеробных) – 30 0 С;
  • в санузлах, ванных комнатах, бассейнах – 32 0 С.

Кроме того, настройка смесительного узла будет выполнена наиболее оптимально, если удастся добиться перепада температур между подачей и обраткой ТП 5-15 0 С. Уменьшение теплового градиента (Δt) требует наращивания расхода теплоносителя, как следствие роста скорости его циркуляции, которая приводит к гидравлическим потерям. Высокий же градиент температур уже ощущается тактильно, как разница в нагреве поверхности напольного покрытия, что вызывает определенный дискомфорт.

Рисунок 2

Типовые схемы насосно-смесительных узлов

В зависимости от способ включения циркуляционного насоса различают следующие схемы НСУ:

  • последовательную – рис. 2а;
  • параллельную – рис. 2б;
  • комбинированную.

При этом основными считаются первые две, а последняя схема, соответственно, представляет их гибридный вариант.

Включенный последовательно насос эксплуатируется только для подготовки теплоносителя и его циркуляции в контурах теплого пола. Подобная схема, хотя и требует использования двух раздельных перекачивающих агрегатов (для первичного и вторичного контуров), однако, отличается лучшими, чем параллельная, технологическими показателями. В профессионально изготовленных системах ТП, зачастую, сборку НСУ осуществляют с последовательным включением насоса. При этом следует учитывать, что эффективность работы такой сборки существенно зависит от правильности её расчетов и настройки.

Преимущество параллельного подключения насоса заключается в возможности использования всего одного агрегата для обеспечения циркуляции теплоносителя в первичном и вторичном контурах. С одной стороны, это упрощает сборку, а с другой – требует установки более мощного перекачивающего оборудования. Если изготовление смешивающего узла для небольшой бытовой системы выполняется своими руками, то выбрав параллельную компоновку, легче избежать критических ошибок, которые могут негативно отразиться на работе водяного теплого пола.

Как в параллельных, так и в последовательных сборках НСУ практикуется использование термостатических двухходовых (рис. 2-5 и 7) или трехходовых (рис. 1, 8 и 9) клапанов. Схемы с термостатами первого типа рекомендуется применять для помещений с площадями ТП в несколько десятков квадратных метров. Поэтому для организации напольного отопления в среднестатистической типовой квартире они вполне подходят. Смешивание теплоносителя в них осуществляется после двухходового клапана непосредственно в циркуляционном потоке системы теплого пола.

Трехходовые термостаты сами являются смешивающими устройствами. Внутри их корпусов происходит регулируемый подмес теплоносителя из первичного контура к циркулирующему потоку из системы ТП. Трехходовая термостатическая запорно-регулирующая арматура рекомендуется для установки на крупных отапливаемых площадях, измеряемой сотнями квадратных метров.

Комплектация смесительного узла

Добиться обеспечения функциональности системы ТП возможно, только имея четкое представление о строении НСУ, практическом назначении его основных и вспомогательных элементов. Устройство и работу типового узла удобно будет разобрать на примере схемы с последовательным включением насосного агрегата и двухходовым клапаном-термостатом (рис. 3). Указанную компоновку имеет смесительный узел для теплого пола Valtec (рис.5), реализуемый в торговой сети в виде готового комплекта оборудования.

Рисунок 3

Основные функциональные элементы НСУ Valtec

К ним относятся:

  • циркуляционный насос;
  • клапан балансировочно-запорный (первичного контура);
  • клапан балансировочный (вторичного контура);
  • байпасный клапан (перепускной).

Насос (рис. 3 и 5, поз.3)

Инициирует подачу и возврат теплоносителя через узлы и петли ТП. Применяется циркуляционное оборудование аналогичное тому, которое используется в первичных контурах системы отопления. Величин его главных рабочих параметров (давление и производительность) должно хватать на преодоление гидросопротивлений в трубопроводах, чтобы обеспечивать циркуляцию теплоносителя с требуемой скоростью и в заданных объемах.

Балансирный клапан первичного контура (рис. 3 и 5, поз.8)

Отвечает за поступающие объемы теплоносителя, подпитывающего систему теплого пола из первичного высокотемпературного контура отопления (Т1, Т2). Балансировка потока жидкости осуществляется изменением пропускной способности клапана. Регулировка балансирного клапана выполняется путем вращения его настроечного винта с головкой под ключ-шестигранник, который закрывается защитным колпачком. Процесс также синхронизируется с работой клапана-термостата (поз. 1), управляемого выносным погружным датчиком (поз. 1а). Чувствительный элемент датчика монтируется в резьбовую гильзу (поз. 4).

Балансирный клапан вторичного контура (рис. 3 и 5, поз.2)

Его настройка зависит от площади подогреваемой поверхности напольного покрытия. Открытие/закрытие регулирующего устройства влияет на изменение пропорции соотношения объемов теплоносителей из обратки ТП (Т21) и подачи первичной системы отопления (Т1). Прикрытие балансировочным клапаном оборотного потока из вторичного контура способствует более интенсивному поступлению разогретой жидкости от теплогенератора (котла). Таким образом, теплопроизводительность ТП увеличивается.

Установка степени открытия клапана (рис. 4) осуществляется по шкале на его оголовке (рис. 5, поз. 2), где указана его пропускная способность в м 3 /час. После завершения настройки шкала от случайного смещения фиксируется винтом 2а.

Рисунок 4

Байпасный клапан (рис. 3 и 5, поз.7)

Совместно с перепускным патрубком (поз. 12) обеспечивает безаварийную работу циркуляционного насоса в режиме подпора, когда циркуляция через петли ТП прекращается полностью либо становится недостаточной. Подобный режим может быть вызван перекрытием контуров на гребенке посредством ручных вентилей либо же работой их клапанов с простым термостатическими или автоматическим управлением. В результате сопротивление течению жидкости, как и нагрузка на оборудование, увеличиваются. При определенном перепаде давления, величина которого настраивается по шкале перепускного клапана (градуировка в бар), он приоткрывается. Теплоноситель либо часть его потока начинает перетекать по байпасному патрубку, замыкая через насос малый цикл циркуляции. Таким образом, исключается аварийная перегрузка и обеспечивается сохранность оборудования.

Вспомогательные элементы

Обеспечивать, поддерживать и контролировать работу НСУ также помогают различные вспомогательные и сервисные устройства:

  • термометры – поз. 5;
  • воздухоотводчики поплавкого типа (автоматические) – поз. 9;
  • дренажные клапаны – поз. 10;
  • обратный шаровый клапан – поз. 11.

Рисунок 5

Как все работает?

Подача теплоносителя в заданном диапазоне температур на коллектор теплого пола обеспечивается настройками узла подмеса. Главный цикл оборота жидкости внутри системы ТП складывается из циклов циркуляции в каждой из веток. При этом НСУ подмешивает горячий теплоноситель из первичного контура отопления в объемах необходимых для восполнения суммарных теплопотерь на отопление всех помещений. То есть, чем интенсивней происходит охлаждение теплоносителя в ветках теплого пола, тем большее его количество добавляется во внутренний оборот всего вторичного контура. Объем обновляемой горячей жидкости изменяется автоматически – от максимального, разово установленного настройками балансирного клапана 8 (рис. 3 и 5), до полного перекрытия. В диапазоне от максимума до минимума потока регулировка осуществляется термостатическим клапаном 1, который получает управляющие импульсы от своего выносного датчика (рис. 5, поз. 1а), контролирующего температуру потока Т11 на подающий коллектор.

Важно! Непосредственно на работу системы теплого оказывают влияние регулирующие функции термостатического клапана 1. В свою очередь, балансировочный клапан 8 служит лишь для согласования суммарных потерь давления во вторичных контурах ТП с потерями давления в отопительных приборах первичного контура. При этом аналогичной настройке по потерям давления должны подвергаться все потребители в первичной системе, чтобы распределение тепловой энергии происходило в соответствие с их запросами, а не по пути наименьшего гидравлического сопротивления. Важность и степень подобной балансировки наглядно показаны на рисунке 6.

Рисунок 6

Одновременно с всасыванием обновляемого горячего теплоносителя Т1 через клапан-термостат 1 (рис. 3 и 5), происходит также втягивание насосом 3 остывшего потока Т21 через балансировочный клапан 2 (вторичного контура). Проходя через насос потоки теплоносителя смешиваются, в результате, на подачу Т11 в коллектор теплого пола уже поступает жидкость заданной настройками НСУ температуры.

Пример циклической работы оборудования НСУ

Совместная работа насоса, балансировочного клапана вторичного контура и термостата происходит следующим образом. Например, в системе ТП предусмотрен термический градиент между подачей и обраткой ТП Δt=10 0 С, а расчетная температура в подающем коллекторе 50 0 С. Допустим, система работает в установившемся режиме, когда результирующий поток теплоносителя от подмеса из первичного контура Т1 и обратного коллектора теплого пола Т21 имеет температуру равную расчетной. При правильно установленных настройках балансира 2 и определенной степени приоткрытия термостата 1, это возможно, только в случае, если из обратки Т21 поступает вода с температурой 40 0 С.

Если же начинает поступать теплоноситель, остывший до 39 0 С или ниже, то соответственно происходит охлаждение и результирующего потока после насоса. Этот дисбаланс улавливается выносным датчиком 1 а, который дает команду на еще большее приоткрытие клапана-термостата 1. В результате увеличивается приток горячей воды из первичного контура отопления Т1 и температура в подающем коллекторе Т11 возвращается к своим расчетным 50 0 С.

Постепенно из обратки Т21 начинает поступать перегретая выше 40 0 С, что влечет за собой обратные процессы – клапан термостата 1 прикрывается и объем подмеса из Т1 снижается. Таким образом, термические циклы в системе ТП постоянно изменяются в режиме поддержания градиент Δt=10 0 С, с подачей t=50 0 С.

Рисунок 7

Какой смеситель выбрать?

Сборка водяного отопления теплого пола может целиком осуществляться своими руками. Это касается не только монтажа отопительных контуров или подключения к коллекторному распределителю, но и комплектации НСУ. Понимая принципы работы его элементов, а также используя типовые рабочие схемы, вполне возможно собрать действующую эффективную смесительную установку. Если же идти по пути наименьшего сопротивления и затратить немного больше средств, то можно обратиться к готовым предложениям от известных производителей отопительного оборудования. Сборка, установка и настройка таких НСУ отличается простотой. И если все делать в точном соответствии с прилагаемыми к ним заводскими инструкциями, то результат гарантировано окажется положительным.

Выше уже был рассмотрен насосно смесительный узел Valtec. Однако также хорошо у потребителей зарекомендовали себя и некоторые другие готовые комплектации НСУ. Например, оборудование для подготовки теплоносителя для системы теплого пола от немецкой компании Kermi (рис.8).

Рисунок 8

Комплект Kermi Стандарт ESM оборудован трехходовым клапаном (Oventrop), циркуляционным насосом (модель Wilo Yonos PARA RS) и, управляющим его работой, предохранительным термостататом. Клапанный модуль Oventrop включает:

  • распределительный трехходовой вентиль;
  • терморегулятор, состоящий из приводной головки и выносного накладного датчика;
  • соединительного циркуляционного патрубка:
  • накидных гаек (американок), к которым подключаются подающий и обратный трубопроводы первичного контура отопления, а также устройства со стороны вторичного контура.

В Kermi Стандарт ESM заложена возможность настройки поддержания температуры теплоносителя в диапазоне 20-50 0 С при давлении в системе ТП до 6 бар. Регулировка осуществляется автоматически в соответствие с установками шкалы на головке-рукоятке трехходового клапана.

Рисунок 9

Еще одна сборка НСУ Solomix от компании Uni-Fitt из более бюджетной серии, но так же неплохо зарекомендовавшая себя на российском рынке. Это готовый смесительный узел на базе трехходового термостата, с встроенным термометром, теплонасосом, байпасным и обратным клапаном и автоматическим воздухоотводчиком.

В НСУ Solomix предусмотрено ручное изменение температуры посредством аналоговой подстройки термостата в диапазоне 20-65 0 С. Комплект рассчитан на работу в системах теплых полов с максимальным давлением до 10 бар. А его форм-фактор, обеспечивающий нижнее подключение трубопроводов первичного контура, заметно облегчает проведение монтажных работ.

Насосно-смесительные узлы для водяного теплого пола

Требуемый расход теплоносителя в любой системе водяного отопления подсчитывается по следующей формуле:

где Q — тепловая мощность системы, Вт; с — удельная теплоёмкость теплоносителя, Дж/кг °С; ∆Т — разность температур между прямым и обратным теплоносителем, °С.

В системах радиаторного отопления перепад температур ∆Т обычно составляет порядка 20 °С, а в системах напольного отопления ∆Т = 5–10 °С.

Это значит, что для переноса одного и того же количества теплоты тёплые полы требуют расхода теплоносителя в 2–4 раза больше.

Максимальная температура теплоносителя в системах тёплого пола, как правило, не превышает 55 °С, рабочее значение этого параметра обычно лежит в пределах 35–45 °С.

В радиаторном же отоплении теплоноситель обычно подаётся с температурой 80–90 °С.

В связи с этими двумя факторами неизменным атрибутом системы напольного отопления является узел смешения.

    Насосно-смесительный узел системы тёплого пола должен выполнять следующие основные функции:
  • поддерживать во вторичном контуре температуру теплоносителя ниже температуры первичного контура;
  • обеспечивать расчётный расход теплоносителя через вторичный контур;
  • обеспечивать гидравлическую увязку между первичным и вторичным контурами.
    К вспомогательным функциям насосно-смесительного узла можно отнести следующие:
  • индикация температуры (на входе и выходе);
  • отсекание циркуляционного насоса шаровыми кранами для его замены или обслуживания;
  • защита насоса от работы на «закрытую задвижку» с помощью перепускного клапана;
  • аварийное отключение насоса при превышении максимально допустимой температуры теплоносителя;
  • отведение воздуха из теплоносителя;
  • дренирование узла.

Принцип работы простейшего насосно-смесительного узла можно объяснить по тепломеханической схеме на рис. 1.

Рис. 1. Тепломеханическая схема простейшего насосно-смесительного узла

Нагретый теплоноситель поступает на вход насосно-смесительного узла от котла или стояка радиаторной системы отопления с температурой T1. На входе в узел установлен настраиваемый термостатический клапан 2, на приводе которого выставляется требуемая температура теплоносителя, поступающего в тёплый пол Т11. Термочувствительный элемент 3 привода клапана располагается после насоса 1. При повышении температуры Т11 выше настроечного значения, клапан 2 закрывается, а при понижении – открывается, пропуская горячий теплоноситель на вход насоса. Пройдя по петлям тёплого пола, теплоноситель остывает до температуры Т21. Часть остывшего теплоносителя возвращается к котлу, а часть – через балансировочный клапан 4 поступает на вход насоса, смешиваясь с горячим теплоносителем.

Таким образом, в первичном (котловом) контуре температура теплоносителя снижается с Т1 до Т21 (∆Ткк = Т1Т21). Температуру Т21 задаёт пользователь. Перепад температур в петлях тёплого пола ∆Ттп = Т11Т21 также задаётся на стадии расчётов. Зная эти данные, и требуемую тепловую мощность тёплого пола, можно определить соотношение расходов в узле:

Читайте также:  Толщина стяжки для водяного теплого пола

    Исходные данные:
  • температура на входе в насосно-смесительный узел Т1 = 90 °С;
  • температура после насоса Т11 = 35 °С;
  • перепад температур в петлях тёплого пола ∆Ттп = 5 °С;
  • тепловая мощность тёплого пола Q = 12 кВт.
    Решение:
  1. Температура на выходе из петель тёплого пола: Т21 = Т11 – ∆Ттп = 35 – 5 = 30 °С.
  2. Перепад температур в первичном (котловом) контуре: ∆Ткк = Т1Т21 = 90 – 30 = 60 °С.
  3. Расход во вторичном контуре G11 = Q/c⋅ ∆Tтп = 12000/4187⋅5 = 0,573 кг/с.
  4. Расход в первичном (котловом) контуре G1 = Q/c⋅ ∆Tтп = 12000/4187⋅60 = 0,048 кг/с.
  5. Расход через байпас G3 = G11G1 = 0,573 – 0,048 = 0,535 кг/с.

Таким образом, расход в контуре тёплого пола в данном примере должен быть в 12 раз выше, чем в котловом контуре.

Как правило, циркуляционный насос при проектировании выбирается с некоторым запасом, поэтому он может перекачивать через байпас большее количество теплоносителя, чем требуется по проекту. К тому же, и температура теплоносителя в первичном контуре может по факту оказаться меньше расчётной. Именно для корректировки этих расхождений с расчётными данными служит балансировочный клапан 4, которым можно ограничить расход через байпас.

Насосно-смесительные узлы VT.COMBI и VT.COMBI.S

В насосно-смесительных узлах VT.COMBI и VT.COMBI.S (рис. 2, 3) приготовление теплоносителя с пониженной температурой происходит при помощи двухходового термостатического клапана, управляемого либо термоголовкой с капиллярным термочувствительным элементом, установленном в линии подающего коллектора (модель VT.COMBI), либо аналоговым сервоприводом, который работает под управлением контроллера VT.К200.М (модель VT.COMBI.S). Контроллер с датчиками температуры теплоносителя и наружного воздуха не входит в комплект поставки насосно-смесительного узла и приобретается отдельно.

В линии подмеса узла установлен балансировочный клапан, который задаёт соотношение между количествами теплоносителя, поступающего из обратной линии вторичного контура и прямой линии первичного контура, а также уравнивает давление теплоносителя на выходе из контура тёплых полов с давлением после термостатического регулировочного клапана.

От настроечного значения Kvb этого клапана и установленного скоростного режима насоса зависит тепловая мощность смесительного узла.

Узел адаптирован для присоединения к нему коллекторных блоков с межосевым расстоянием 200 мм и горизонтальным смещением между осями коллекторов 32 мм. При этом коллекторные блоки могут присоединяться как на входе, так и на выходе насосно-смесительного узла. Это позволяет использовать этот узел в комбинированных системах отопления (рис. 4), где отопление тёплым полом совмещается с радиаторным отоплением.

Рис. 4. Узел VT.COMBI.S в комбинированной системе отопления

Насосно-смесительный узел VT.DUAL

Насосно-смесительный узел VT.DUAL (рис. 5 и 6) состоит из двух модулей (насосного и термостатического), между которыми монтируется коллекторный блок контура тёплого пола. Для смешения используется трехходовой термостатический клапан, управляемый термоголовкой с капиллярным термочувствительным элементом, установленным на обратный коллектор вторичного контура.

Рис. 5. Насосно-смесительный узел VT.DUAL

Предохранительный термостат подающего коллектора останавливает насос в случае превышения настроечного значения температуры, прекращая циркуляцию в петлях тёплого пола.

Рис. 6. Узел VT.DUAL с коллекторным блоком (подключение справа)

Конструкция узла предусматривает перепускной контур с балансировочным клапаном, сохраняющим неизменным расход теплоносителя в первичном контуре при перекрытии петель тёплого пола.

Элементы узла устанавливаются не вертикально, а под углом 9°, что вызвано горизонтальным смещением осей коллекторного блока. Это позволяет подключать узел к подводящим трубопроводам как справа, так и слева.

Насосно-смесительный узел VT.VALMIX

Насосно-смесительный узел VT.VALMIX (рис. 7) отличается от узла VT.COMBI меньшей монтажной длиной и отсутствием перепускного клапана. Узел рассчитан на установку циркуляционного насоса монтажной длиной 130 мм. Ручной воздухоотводчик узла расположен на регулировочной втулке балансировочного клапана вторичного контура.

Узел поставляется с термоголовкой VT.3011, имеющей диапазон настройки температур от 20 до 62 °С. Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.

Рис. 7. Насосно-смесительный узел VT.VALMIX

Насосно-смесительный узел VT.TECHNOMIX

Так же как узел VT.VALMIX, узел VT.TECHNOMIX (рис. 8) рассчитан на установку циркуляционного насоса длиной 130 мм, но имеет несколько большую монтажную длину.

Кроме того, входные и выходные патрубки узла находятся в одной плоскости, поэтому узел монтируется к коллекторному блоку под углом 9°, и может устанавливаться как справа от обслуживаемого коллекторного блока, так и слева от него.

Узел поставляется с термоголовкой VT.5011, имеющей диапазон настройки температур от 20 до 60 °С.

Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.

Сравнение насосно-смесительных узлов VALTEC

Таблица 1. Сравнительная таблица насосно-смесительных узлов VALTEC

Смесительные узлы для теплого пола

Система отопления “водяной теплый пол” обладает большим количеством преимуществ, эту система становится все более популярной у российских потребителей. Теплые полы относятся к низкотемпературным отопительным системам, в отличие от радиаторов отопления, поэтому обязательным элементом в системе теплого пола является смесительный узел теплого пола.
При использовании такой системы, оснащенной термосмесителем, неприятности типа получения ожогов полностью исключены, к тому же обеспечивается экономия энергии от 30 до 50%.

Зачем нужен смесительный узел для теплого пола?

Термосмеситель для теплого пола предназначен для обеспечения циркуляции и регулировки температуры теплоносителя в отопительной системе теплого пола. Состоит из двух основных элементов: циркуляционного насоса для создания циркуляции теплоносителя в контуре теплого пола и регулирующего клапана, который подпитывает контур горячей воды более прохладной из обратки.
Котел, обычно, нагревает воду до температуры 90 – 95°С, которая требуется для работы высокотемпературных радиаторов, а комфортная температура поверхности пола не должна превышать 31°С. С учетом толщины стяжки, в которой проложены трубы системы «теплый пол», а также толщину и тип напольного покрытия, температура теплоносителя в трубах теплого пола должна быть на уровне 35 – 55°С и не выше, т.е. в них нельзя направлять воду непосредственно из котла, так как ее температура слишком велика. Именно с целью понизить температуру теплоносителя на входе в контур теплого пола используется узел смешения. В нем смешивается горячий теплоноситель и более холодный из контура обратки. В результате средняя температура становится ниже и различные контуры отопления в доме работают со своими температурными параметрами: в радиаторы подается горячая вода 95°С, а в контур теплого пола 55°С.

Смесительные группы для теплого пола обычно производятся двух типов.

Первый тип предусматривает использование трехходовых смесительных клапанов, задача которых заключается в смешивании горячей воды из котла и холодной воды из обратки. Клапаны обычно оснащены сервоприводами, благодаря которым возможно их управление термостатичными и погодозависимыми устройствами.
Трехходовый клапан совмещает функции питающего перепускного клапана и байпасного балансировочного клапана.
Считается, что трехходовой клапан универсален и незаменим в системах отопления с погодозависимыми контролерами и в крупных отопительных системах с множеством контуров.
Но имеются и некоторые недостатки. Например, может возникнуть ситуация, когда клапан по сигналу термостата может полностью открыться и впустить в систему теплый пол горячую воду с высокой температурой. Резкий температурный скачок может спровоцировать разрыв стяжки. Из недостатков еще стоит отметить, что трехходовые смесительные клапаны обладают высокой пропускной способностью, что не слишком удобно, так как любые изменения в регулировке клапана могут существенно сказаться на температуре пола. Их рекомендуется устанавливать в помещениях, у которых площадь превышает 200 кв.м.

Второй тип предусматривает использование двухходовых клапанов. В них смешивание горячей воды с холодной происходит постоянно, что полностью исключает перегрев теплого пола. Двухходовой смесительный клапан обладает малой пропускной способностью, за счет чего обеспечивается плавное и стабильное регулирование температурного режима. Их рекомендуется устанавливать в помещениях, у которых площадь не превышает 200 кв.м.
Двухходовой клапан иногда еще называют питающим клапаном. На двухходовой клапане обычно установлена термостатическая головка с жидкостным датчиком, постоянно контролирующим температуру теплоносителя, поступающего в контур теплого пола. Термоголовка открывает и закрывает клапан, добавляя или уменьшая подачу горячего теплоносителя от котла отопления.
Смешение теплоносителей происходит таким образом: теплоноситель из обратки подается постоянно, а горячий теплоноситель подается только, когда необходимо, т.е. его подача регулируется клапаном. В связи с этим теплый пол не перегревается и срок его эксплуатации продлевается.

Коллекторный узел для водяного пола распределяет теплоноситель по отдельным отопительным контурам. Обязательными его элементами являются расходомеры (так как длина труб в контурах разная и, соответственно, гидравлическое сопротивление тоже), термостатические клапаны (помогают регулировать температуру в отдельных контурах системы) и циркуляционный насос, который обеспечивает движение воды в контуре. Кроме основных элементов в смесительный узел могут входить: байпас, который защищает узел от перегрузок, дренажные и отсекающие клапаны и воздухоотводчики.

Погодозависимое управление.
Чтобы изменять мощность системы «теплый пол» в зависимости от погодных условий, например, при резком снижении уличной температуры, необходимо заранее увеличить температуру теплоносителя и его расход.
Для этлго используются клапаны с автоматическим управлением. Погодозависимый контроллер вычисляет необходимую температуру теплоносителя и плавно управляет клапаном. Контроллер постоянно проверяет температуру, и, если фактическая температура теплоносителя, подающегося в теплый пол, не соответствует расчетной, то контроллер поворачивает клапан на несколько градусов в необходимую сторону.
Если все жильцы отсутствуют в доме, то контроллер может снизить температуру теплоносителя и поддерживать ее в пределах заданного значения.

Режим ограничения температуры может обеспечиваться благодаря установке на клапан термостатической головки, оснащенной датчиком выносного типа. Температурный режим нагрева пола ограничивается отметкой, выставленной на термостатической головке.

Специалисты компании “Термогород” Москва помогут Вам правильно подобрать, купить, а также смонтировать смесительный узел, найдут приемлемое решение по цене. Задавайте любые интересующие Вас вопросы, консультация по телефону абсолютно бесплатна, или воспользуйтесь формой “Обратная связь”
Вы останетесь довольны, сотрудничая с нами!

Зачем нужен смесительный узел для теплого пола – виды, назначение, устройство

В последние годы обустройство пола с обогревом успешно сочетается с отопительной системой с привычными для многих радиаторами. Совместное функционирование двух таких похожих и одновременно принципиально разных конструкций невозможно без смесительного узла для теплого пола.

Поскольку обогрев пола относится к низкотемпературным системам, а отопительные радиаторы к высокотемпературным, непременным условием их совместной эксплуатации является наличие узла подмеса. Его основное функциональное назначение, как понятно из названия – смешивать.

Назначение смесительных узлов

Прежде всего, надо отметить, что применяют смесительный узел для водяного
теплого пола, поскольку и в системе нагрева пола, и в радиаторах течет одинаковый теплоноситель.

Система теплоснабжения обычно состоит из:

  • нагревательного котла, в котором греется вода;
  • одного контура с высокотемпературными батареями;
  • нескольких контуров, входящих в конструкцию теплого пола.

Котел, входящий в систему, нагревает теплоноситель до температуры, необходимой для функционирования радиаторов, обычно это 95 °С, но в некоторых случаях 85 и даже 75°С. В соответствии с санитарными нормами, температура на напольной поверхности не может быть больше 31°С. Ограничение связано со многими причинами, в том числе с комфортным передвижением по дому.

С учетом высоты стяжки, в которую вмуровывают трубопроводы системы обогрева, а также типа и параметров материала пола температура рабочей среды в трубах составлять должна не больше 55 градусов. Отсюда ясно, что не следует направлять в отопительный контур горячую воду прямо из котла, поскольку она имеет чересчур высокую температуру.

Поэтому с целью понижения степени нагрева рабочей среды на входе в контур производят монтаж смесительного узла теплого пола. В нем происходит смешивание потоков теплоносителя с разными температурами. В результате его температура понижается, и вода подает в отопительный контур.

Нередко владельцев недвижимости интересует, всегда ли для теплого пола нужен смесительный узел, и когда его можно не устанавливать. Специалисты утверждают, что такое вполне возможно. Если обустройство теплоснабжения в доме предусматривает использование низкотемпературных контуров, а агрегат нагревает воду только до нужной температуры для отопительной системы, тогда можно не монтировать узлы подмеса.

Примером является применение воздушного теплонасоса. Если нагревательный котел подает воду не только в конструкцию пола с обогревом, но и для принятия душа с температурой 65 – 75°С, тогда теплый пол без смесительного узла эксплуатировать нельзя.

Особенности работы узлов подмеса

Функционирование узла происходит так:

  1. Горячий теплоноситель достигает коллектора обогрева пола и доходит до предохранительного клапана с термостатом.
  2. Когда нагрев рабочей среды превышает требуемый уровень, срабатывает клапан и начинается подача холодной воды из обратки, в результате чего она перемешивается с горячим теплоносителем.
  3. После того, как температура имеет нужное значение, клапан опять срабатывает и поступление горячей воды прекращается.

Коллекторный узел отвечает за регулировку степени нагрева теплоносителя и за его циркуляцию в контуре, и состоит из двух главных элементов:

  1. Предохранительного клапана, подпитывающего отопительный контур горячей водой настолько, насколько это требуется, осуществляя контроль на входе.
  2. Циркуляционного насоса, обеспечивающего перемещение теплоносителя по контуру с определенной скоростью, в результате чего напольное покрытие будет равномерно прогреваться по всей площади.

Кроме них в смесительный узел для теплого пола и радиаторов могут входить:

  • байбас, препятствующий перегрузке системы;
  • воздухоотводчики;
  • клапаны отсекающего и дренажного типа.

В зависимости от решаемых задач смесительный узел коллектора можно обустраивать разными способами. Его всегда монтируют до контура отопительной конструкции, но само место монтажа точно не указывается. Например, узел можно сделать в комнате, где находится теплый пол, либо в котельном помещении.

Когда в постройке несколько комнат с теплыми полами, тогда смесительные узлы размещают в каждой из них отдельно или в близко расположенном коллекторном шкафу. В работе этих узлов имеется главное отличие, связанное с использованием разных предохранительных клапанов. Эти устройства бывают 2-х и 3-х ходовыми.

Узел подмеса с двухходовым клапаном для теплого пола

2-х ходовой тип устройства также называют питающим. На нем имеется термостатическая головка, укомплектованная жидкостным датчиком, в постоянном режиме контролирующим степень нагрева рабочей среды, которая подается в контур пола. Головка служит для открытия/закрытия клапана, в результате чего поступление горячей воды от нагревательного котла добавляется или отсекается.

Подмес потоков осуществляется так: вода из обратки поступает постоянно, а нагретый теплоноситель подается в случае необходимости, благодаря тому, что клапан регулирует этот процесс. В результате система обогрева пола не перегревается никогда и тем самым срок ее эксплуатации увеличивается.

У двухходового устройства малая пропускная способность, поэтому регулировка температуры рабочей среды осуществляется плавно. Специалисты при подключении смесительного узла для теплого пола отдают предпочтение использованию данного типа клапана. Правда, существует ограничение на его применение – обогреваемая площадь не должна превышать 200 «квадратов».

Узел подмеса с трехходовым клапаном

Трехходовой вариант совмещает в себе две функции: байпасного балансировочного крана и перепускного питающего клапана. Внутри него перемешиваются потоки холодной обратки и горячего теплоносителя.

Читайте также:  Подключение терморегулятора к теплому полу схема

Трехходовые устройства нередко оснащают сервоприводами, предназначенными для управления термостатическими приборами и контролерами погоды. В этом случае внутри клапана имеется заслонка, находящаяся в зоне 90 ° между обратным трубопроводом и трубой подачи нагретого теплоносителя от агрегата. Ее можно устанавливать в любом расположении – с уклоном в одну из сторон или посередине в зависимости от требуемого соотношения между горячей водой и обраткой.

Принято считать, что данный вид клапанов незаменим для отопительных систем с большим числом контуров.

Из недостатков этих элементов следует отметить:

  1. Не исключены случаи, когда в результате сигнала от термостата клапан открывается и впускает теплоноситель, имеющий температуру 95 °С, в контур пола. Такие резкие температурные скачки при эксплуатации системы недопустимы, поскольку от избыточного давления трубопровод может лопнуть.
  2. Трехходовые клапаны, имеющие значительную пропускную способность, даже в случае минимального сбоя в регулировке устройства могут сильно изменить температуру в контуре.

Чтобы поменять мощность системы нагрева пола в зависимости от погоды используют специальную арматуру – погодозависимый контролер. Например, в случае резкого похолодания, помещение в доме начинает остывать быстрее и нагревательная конструкция не может справляться со своим назначением. Для повышения ее эффективности следует увеличить нагрев теплоносителя и его расход.

Можно задействовать клапаны, управляемые вручную и при изменении погоды каждый раз крутить вентиль. Но недостаток такого метода очевиден: оптимальный режим выставить сложно. Поэтому многие домовладельцы отдают предпочтение клапанам с автоматическим управлением. Контролер вычисляет требуемую температуру и плавно управляет устройством.

Вся зона в 90 градусов разбита на 20 секторов, в каждом из которых 4,5 градуса. Контролер проверяет температурный режим раз в 20 секунд. Когда фактическая величина температуры воды, поступающей в систему, не отвечает расчетной, тогда клапан разворачивается в одну из сторон на 4,5 градуса.

Кроме этого, контролер позволяет сэкономить энергоносители. При отсутствии жильцов он понижает температуру в комнатах до минимально возможной отметки.

Схемы смесительного узла для пола

Схем подмеса для теплого пола существует множество. Можно обустраивать смешение теплоносителя, как до коллектора, так и на всех отводах от него.

Каждую ветку нужно оборудовать такими приборами как термостаты, расходомеры, клапаны:

  1. Устройство балансировочное вторичного контура. Благодаря этому клапану осуществляется регулировка смесительного узла теплого пола – корректируется соотношение между объемами горячего и холодного теплоносителя из обратки. Чтобы повернуть клапан, используется шестигранный ключ, а чтобы не произошло смещение, его фиксируют зажимным винтом. Кроме этого, на устройстве имеется шкала расхода, отражающая его пропускную способность, равную от 0 до 5 кубометров в час.
  2. Клапан балансировочно-запорный для радиаторного контура. Данное устройство предназначается для соединения группы подмеса для теплого пола с иными элементами отопительной системы. Для его поворота используют шестигранный ключ.
  3. Клапан перепускной. Это предохранительное устройство. Он защищает насосное оборудование при работе того в режиме, когда через него не подается вода. Устройство срабатывает, если давление в системе понижается до определенного значения, выставляемого ручкой.

Схемы смесительного узла для радиаторов отличаются, что зависит от того, обустраивается одно- или двухтрубная теплоснабжающая система. Например, байпас при монтаже однотрубной конструкции всегда находится в открытом положении, чтобы горячий носитель тепла частично мог всегда двигаться в сторону батарей. В двухтрубной системе байпас закрывают, поскольку в нем отсутствует необходимость.

Не всегда коллекторная группа монтируется до радиаторного контура. Когда строение имеет небольшую площадь, и падение температуры рабочей среды незначительно, тогда коллектор с узлом подмеса располагают на обратке радиаторного контура. В этом случае коллектор теплого пола со смесительным узлом работает наиболее эффективно.

Порядок настройки смесительного узла

Когда выполнена работа в соответствии со схемой подключения смесительного узла для теплого пола, его функционирование требует регулировки. Процесс установки узлов несложен, потребуется только состыковать трубы.

Что касается настройки, то эта работа выполняется в определенной последовательности.

Этап 1. Сервопривод (термоголовку) снимают, чтобы он не оказывал влияние на узел при настройке.

Этап 2. Пропускной клапан выставляют на максимум, равный 0,6 бар. Если при выполнении настройки случайно сработает устройство, результат не получится корректным. По этой причине его следует поставить в положение, при котором это не может произойти.

Этап 3. Далее определяютcя с установкой балансировочного клапана. Под цифрой 1 обозначен радиаторный контур, 2 – контур системы пола с обогревом.

Для этого пользуются формулой:

t1 – температура рабочей среды в подающем трубопроводе высокотемпературного контура;

t2 подачи – температура носителя тепла в трубе подачи напольного контура;

t2обр – температура воды в обратке контура пола с обогревом.

т – коэффициент, равный 0,9.

Если, например, t1 = 95 °, t2 подачи = 45 ° и t2обр = 35 ° подставить в формулу, тогда Kυб получится равным 4,05.

Это значение нужно выставить на устройстве балансировки.

Этап 4. Далее настраивают насосное оборудование. Для этого потребуется узнать расход воды в системе нагрева пола вместе с коллектором и величину потери давления в контуре за узлом подмеса.

Расход носителя тепла в напольном контуре узнают, воспользовавшись несложной формулой:

G2 – расход теплоносителя во вторичном контуре обогрева пола;

Q – сумма тепловой мощности устройств, которые подключены после узла подмеса;

c – теплоемкость теплоносителя, в случае с водой c = 4,2 кДж.

Если подставить цифровые значения в формулу, тогда G2 = 857 кг/час или 0,86 м³/час.

Чтобы узнать потери давления в контуре пола с обогревом, делают гидравлический расчет. Скорость насоса определяют по специальным графикам. Прежде отмечают точку, соответствующую расходу и напору насоса. Находящаяся выше полученной точки кривая отражает скорость насосного оборудования.

Так полученная величина расхода 0,86 м³/час, а напор насоса -4,05 мв.ст. Потерю давления в контурах после узла вычисляют с запасом 1 мв.ст., итого ΔPн = ΔPс + 1 = 4,05 +1 мв.ст.

Когда при настройке смесителя для теплых полов своими руками не получилось рассчитать насос, данный этап пропускают. В этом случае насосное оборудование выставляют на минимум. Если потом в процессе балансировки отопительной системы станет ясно, что скорости не хватает, то насос выставляют на больший параметр.

Этап 5. Начинают балансировку линий теплоснабжения пола. Прежде всего, закрывают на радиаторном контуре кран балансировочно-запорного типа. Далее откидывают с клапана крышку и поворачивают его, двигаясь по часовой стрелке до упора, задействуя шестигранный ключ.

Ответвления контура регулируют, используя балансировочные клапаны. Когда после узла подмеса имеется только одна линия, то этот процесс не требуется.

Балансировку выполняют следующим образом:

  1. Открывают регуляторы на максимум.
  2. На ответвлении, где отклонение расхода самое большое (отличие фактического показателя от проектного), клапан закрывают до нужной величины.
  3. Аналогично регулируют и остальные ветки системы.
  4. Если расход после балансировки ответвлений собьется, его еще необходимо откорректировать.
  5. В случае, когда даже при открытых клапанах выставить расход не получилось, насосное оборудование следует переключить на большую скорость.

Этап 6. Увязывают узел подмеса для пола с остальными отопительными приборами. С этой целью на радиаторном контуре открывают клапан балансировочно-запорного типа, который ранее был закрыт, до положения, способного обеспечить необходимый расход теплоносителя.

Когда настраивается узел подмеса для теплого пола своими руками, этот показатель можно контролировать при помощи расходомеров или в обратном трубопроводе.

Расход теплоносителя в радиаторном контуре вычисляют по формуле:

Все цифровые значения известны, если их подставить в формулу, тогда G1 = 142 кг/час или 0, 14 м³/час.

Этап 7. Приступают к настройке перепускного клапана. Выставляют на нем величину давления, которая должна быть на 5 – 10% меньше максимального давления насосного оборудования при заданной скорости. Это значение узнают из инструкции к насосу. Перепускной клапан насосного оборудования открывают только тогда, когда оно работает на нагнетание давления притом, что расход воды отсутствует. На этом устройстве устанавливают давление 0,54 – 5% = 0,51 бар.

Этап 8. Проверяют правильность функционирования смесительного узла. Подтверждением равномерности прогрева ответвлений теплого пола и правильности соотношения температурного режима в контурах является выполнение нижеприведенного равенства:

при этом индексом «р» обозначены расчетные величины, а индексом «ф» – фактические.

В том случае, когда равенство не выполнено, тогда на ¼ оборота закрывают балансировочно-запорный клапан, находящийся на радиаторном контуре, после чего повторно снимают показания и выполняют расчеты.

Если равенство соблюдается, считается, что смесительный узел эксплуатируется корректно. После этого возвращают на место сервопривод, на все элементы, где нужно, помещают защитные колпачки и затягивают винт на балансировочном устройстве.

Отопительный узел подмеса помещают в коллекторный шкаф, который обычно находится в помещении, где обустроен пол с обогревом. Также его можно расположить рядом с нагревательным котлом, если позволяет расстояние. Элементы смесительного узла можно смонтировать своими руками.

Нужно знать, что огромным минусом обустройства конструкции теплого пола без узла подмеса и коллектора заключается в том, что тогда нужно минимизировать теплопотери воды при передвижении ее от нагревателя к контуру, для чего потребуется выполнить ряд мероприятий по утеплению здания и его элементов.


Виды насосно-смесительных узлов для теплого пола

Системы теплого пола уже давно никого не удивляют. Люди, покупающие или возводящие загородное жилье, по умолчанию заказывают монтаж такого отопления. Причем все чаще устанавливается водяной обогрев. Объясняется это довольно легко. Несмотря на довольно сложный монтаж насосно-смесительного узла для теплого пола, такая отопительная система считается довольно экономичной, эффективной и комфортной в эксплуатации.

Основные задачи

Обычные системы отопления считаются высокотемпературными. Большинство водонагревательных котлов рассчитаны на радиаторы и конвекторы, способные выдерживать нагрев до 90°С. При этом средние температурные показатели в системе обычно поддерживаются на уровне 75°С.

Чтобы поддерживать комфортную температуру теплого пола, устанавливают насосные узлы

Это слишком много для водяного обогрева напольного покрытия по следующим причинами.

  1. Такая температура будет некомфортной. По полу банально будет неприятно ходить. Его нагрев не должен превышать 30°С.
  2. Ни одно напольное покрытие не сможет долгое время выдерживать высокую температуру. Со временем оно вспучится, начнет растрескиваться и утратит свой первоначальный вид.
  3. Излишний нагрев негативно сказывается на бетонной стяжке, в которую укладываются трубы. Она разрушается.
  4. Для создания оптимального микроклимата в доме водяному обогреву напольного покрытия не нужны повышенные температурные показатели.

Современные отопительные котлы способны поддерживать нагрев теплоносителя в определенном диапазоне. Ставить отдельный бойлер экономически невыгодно. Обычно систему теплого пола подключают к общему с радиаторами трубопроводу.

Как сделать коллектор для теплого пола своими руками:

В этом случае единственным разумным решением будет установка насосного узла для теплого пола. Он позволит смешивать горячую воду с теплоносителем, который уже отдал большую часть тепловой энергии. Тем самым можно регулировать необходимую температуру напольного покрытия.

Люди делают то же самое вручную в ванной комнате и на кухне, когда открывают горячий и холодный кран, чтобы получить воду необходимой температуры. Естественно, узел подмеса для отопления имеет более сложное устройство, чем смеситель на кухне. Его главная задача — обеспечение сбалансированной циркуляции воды в контурах системы. Также он должен точно отбирать необходимое количество теплоносителя из труб и при необходимости замыкать поток в кольцо. Хороший узел должен самостоятельно корректировать свою работу, чтобы человеку не приходилось регулировать уровень нагрева вручную.

Прибор, удовлетворяющий таким требованиям, должен быть сложным, поэтому большинство людей покупает в магазинах готовые решения. Выглядят такие узлы превосходно и функционируют не хуже, но цены на них слишком высоки. Из-за этого все же находятся люди, которые после изучения всей имеющейся информации собирают узел подмеса для теплого пола своими руками. Оказывается, это не такая уж сложная задача.

Смесительный узел для теплого пола:

Принцип работы

Все смесительные узлы работают по одному принципу. Поток нагретой воды проходит по контуру и останавливается предохранительным клапаном, расположенным в распределительном коллекторе. Клапан подключен к термостату или датчику, снимающему температурные показатели.

Благодаря насосно-смесительным узлам, система теплого пола работает равномерно

Если температура теплоносителя слишком высока, то клапан открывает заслонку для доступа в систему холодной жидкости. Она подмешивается к горячей воде. При низких температурах происходит обратный процесс. При достижении заданной температуры клапан перекрывается и поступление разогретого теплоносителя прекращается.

Узел подмеса не только контролирует температуру жидкости, но и регулирует ее циркуляцию в системе. Выполнение этих двух функций обеспечивается 2 основными элементами: предохранительным клапаном и насосом циркуляции. Последний является ключевым элементом системы. Именно благодаря ему пол прогревается равномерно.

Подробнее о насосно-смесительном узле для теплого пола:

К второстепенным элементам относятся:

  • байпас;
  • воздухоотводчики;
  • перекрывающие и дренажные клапаны.

Наличие того или иного элемента определяется задачами и целями системы. Узел всегда устанавливается до входа в общий контур. При этом точное его местоположение не регламентируется.

Отличия различных систем

Разные смесительные узлы имеют похожую конструкцию. Принципиальные различия заключаются в использовании разных предохранительных клапанов. Самыми распространенными считаются двух- и трехходовые клапаны.

Первый тип питающего устройства оснащается термостатической головкой. В нее встроен температурный датчик жидкостного типа. Информация, идущая с него, позволяет регулировать интенсивность потока разогретого теплоносителя.

Двухходовый клапан применяется в таких системах, где в обратку постоянно добавляется горячая жидкость от котла. Такой подход исключает перегрев теплого пола и продлевает срок его безаварийной работы.

Существуют двухходовые и трехходовые насосные узлы

Такой клапан не отличается высокой пропускной способностью. Значит, регулировка температуры происходит плавно. Его рекомендуется использовать в помещениях с небольшой площадью пола.

Второй тип питающего устройства представляет собой комбинированный вариант. В нем сочетаются функции клапана и балансировочного крана. Работает он иначе, чем двухходовое устройство. Благодаря ему, в горячий теплоноситель поступает охлажденная вода из обратки.

Трехходовый клапан часто подключается к внешним термостатам. Последние позволяют устанавливать нагрев жидкости с учетом уровня уличной температуры воздуха. Подача воды в нем регулируется заслонкой, расположенной на стыке труб, идущих от котла и обратки.

Трехходовые устройства считаются более современными и производительными. Поэтому их по умолчанию устанавливают в системах, имеющих несколько нагревательных контуров, обогревающих помещения большой площади.

У таких клапанов есть несколько недостатков:

  1. Существует риск резкого повышения температуры теплоносителя в системе, если из котла будет поступать больше жидкости, чем из обратки.
  2. Из-за большой пропускной способности трехходового устройства даже при небольшом изменении положения заслонки температура значительно повышается. Нет возможности тонко регулировать нагрев пола.
  3. В крупных помещениях требуется обязательная установка внешних датчиков, отслеживающих температуру на улице. В противном случае обеспечить комфортные условия внутри здания невозможно.

Впрочем, необходимость установки термостатов можно рассматривать и как положительный момент, ведь они обеспечивают лучшую регулировку температуры. Кроме того, с их помощью можно понижать нагрев в помещениях, где людей нет. Это может значительно снизить расходы на отопление.

Варианты схем

Существует несколько вариантов присоединения смесительного узла к котлу. Они отличаются типом используемого клапана и видом подключения циркуляционного насоса. Последний может присоединяться к системе последовательно или параллельно.

Читайте также:  Монтаж теплого инфракрасного пола

Схема смесительного узла для теплого пола

Двухходовый термоклапан и последовательное соединение

Эта схема самая простая и потому популярная. Чтобы собрать такой насосно-смесительный узел своими руками, понадобятся следующие элементы:

  1. Запорные шаровые краны. Они нужны для полного отключения теплого пола от общей системы. Это необходимо при проведении профилактики или ремонта.
  2. Фильтр грубой очистки. Некоторые мастера отказываются от него, но специалисты рекомендуют все же устанавливать, так как он повышает сроки службы оборудования.
  3. Термометры. Они позволят визуально контролировать и при необходимости осуществлять отладку узла.
  4. Двухходовый клапан. Он ничем не отличается от приборов, устанавливаемых на радиаторах отопления. Его задача — регулировка потока горячей воды, поступающей в систему.
  5. Термоголовка. По сути, это насадка с датчиком температуры. Она надевается на питающее устройство и управляет его работой.
  6. Сантехнические тройники. Их используют для создания байпаса, в котором будет осуществляться отбор холодной или горячей воды.
  7. Балансировочный кран. У него одна-единственная задача — точная настройка теплого пола.
  8. Циркуляционный насос. Этот самый важный элемент. Он должен иметь несколько режимов работы, чтобы точно регулировать обогрев.
  9. Обратный клапан, предотвращающий появление обратного потока теплоносителя.

Многие люди считают, что клапан не нужен. Но лучше подстраховаться. Этот элемент спасет систему от поломки, если циркуляционный насос вдруг начнет подсасывать воду из обратки при закрытом термоклапане.

В схеме с двухходовым питающим устройством и параллельным соединением циркуляционного насоса обратка и подача от котла меняются местами. Сам насос размещается на байпасе. К такому решению прибегают, когда требуется разместить узел подмеса компактно. Но за меньшие габариты приходится платить сниженной производительностью.

Трехходовый клапан и параллельное подключение

Если сравнивать эту схему с аналогичной, но на двухходовом клапане, то изменения будут незначительными. Вместо тройника и упрощенного питающего устройства устанавливается трехходовый смеситель. Причем устанавливается он в верхней точке над насосом.

Трехходовой клапан более незначителен в размерах

Управление системой осуществляется с помощью той же термоголовки, имеющей выносной температурный датчик. Потоки теплоносителя смешиваются внутри смесителя. Его заслонка устроена таким образом, что приоткрытие одного канала приводит к соразмерному закрытию другого.

При последовательном расположении циркуляционного насоса с трехходовым термоклапаном происходит смешение приходящих по одной трубе потоков, дальнейшее перенаправление теплоносителя нужной температуры через центральный патрубок.

Преимущество такой схемы заключается в более компактных размерах. В остальном она ничем не отличается от параллельного подключения.

Стоит отметить, что существуют более сложные схемы подключения, но реализуются они только в смесительных узлах заводского производства. Собирать их своими руками слишком сложно. В подавляющем большинстве случаев для обогрева полов в доме хватает упрощенных схем.

Что касается подробной инструкции по сборке узла, то ее нет и не может быть. Человек, решивший установить его в своем доме, должен владеть навыками сантехнического монтажа и понимать, как работает система.

Если у него есть необходимые знания, то подобрать необходимые комплектующие и собрать их в единое устройство не составит труда. Когда таких знаний и навыков нет, то даже не стоит пытаться собрать узел подмеса самостоятельно, никакая инструкция не поможет.

Смесительный узел для теплого пола: принцип действия и описание

Организация теплых водяных полов в доме с применением высокотемпературного отопительного оборудования (котел, радиаторы) невозможна без использования специального смесителя. Официальное название устройства — смесительный узел, обеспечивающий соблюдения СНиП и строительных норм по эксплуатации систем нагрева воздушных масс снизу помещений. Его необходимо устанавливать и в том случае, когда обогрев объекта выполняется с помощью высоко- и низкотемпературных систем, и в том случае, когда низкотемпературная система играет роль основной и функционирует за счет автономного котла отопления. Выясним, можно ли установить смесительный узел для теплого пола своими руками, как он работает, и зачем используется.

Зачем устанавливать смесительный узел?

При организации системы водяного нагрева пола ее подключают к отопительному оборудованию — котлу. Он подает нагретый до 70-950С теплоноситель (воду) в радиаторы и автоматически в трубы водяного пола. В результате поверхность напольного покрытия раскаляется до 65-850С. Но нормам СНиП такой температурный режим недопустим. Правила четко оговаривают допустимый диапазон — 27-330С — нагрева напольной поверхности. Получить требуемую настроечную температуру позволяет установка смесителя в систему теплого пола — оборудование для принудительного распределения водных потоков. Благодаря ему горячий теплоноситель, поступающий из котла, автоматически смешивается с остывшей водой, поступающей из обратки. В подающую трубу попадает среда оптимальная по температурным данным для нагрева поверхности пола — 35-550С.

Установкой насосно-смесительного узла для теплого пола решают и ряд других проблем:

  • Обеспечение максимально комфортных условий проживания в доме. Оптимальный температурный режим достигается посредством регулировки t0 носителя тепла;
  • Узел смешения позволяет создать безопасные условия для перемещения по полу босиком. Ходить по поверхности, t0 которой достигает даже 400С крайне некомфортно;
  • Гарантия безопасной эксплуатации стяжки;
  • Защита напольного покрытия. Особенно если в качестве отделки выбран ламинат или линолеум, паркетная доска или другой настил;
  • Гарантии безопасной эксплуатации системы нагрева воздушных масс снизу помещений. Грамотно установленный смеситель для теплого пола позволяет обеспечить защиту труб системы от термического расширения.

Как работает и из чего состоит смесительный узел для теплого пола?

Узлы продаются в различных вариантах сборки. Классический смесительный узел состоит из трехходового (предохранительного) клапана и циркуляционного насоса. В магазинах можно встретить и модели с расширительным баком, коллектором. При этом нужно учитывать, что даже в том случае, если котел отопления уже снабжен насосом, его будет недостаточно для нормальной работы системы обогрева. Он будет работать на снабжение горячей средой радиаторов, поэтому узел подмеса для теплого пола обязательно должен иметь автономным насос — нужен для обеспечения регулировки t0 среды в системе нагрева воздушных масс снизу.

Помимо этого смесительный узел для теплого пола оснащается термостатом, который отключает подачу жидкой среды, если в подающей трубе t0 теплоносителя превышает заданную пользователем. То есть предохраняющий датчик соединен непосредственно с насосом системы водяного нагрева пола. Описать принцип работы смесительного узла теплого пола достаточно просто:

  • нагретый до заданной температуры теплоноситель подается насосом к коллектору вспомогательной системы нагрева;
  • у трехходового клапана, работающего совместно с предохранительным датчиком t0, регистрируется его градус;
  • клапан срабатывает, если t0 выше заданных градусов в параметрах;
  • начинается подача остывшей среды из обратки;
  • узел для теплого пола выполняет подмес холодной среды к горячей субстанции;
  • регистрация t0 среды после смешивания;
  • если температура достигла установленной нормы, клапан срабатывает;
  • подача горячей субстанции закрывается;
  • подача в трубы теплоносителя корректной температуры.

Классический смесительный узел выполняет не только функцию подмеса остывшей среды в горячую жидкость, но и обеспечивает его движение по петлям. Именно эту функцию берет на себя циркуляционный насос. Современный термостатический смеситель для теплого пола может оснащаться и отводчиком воздуха, и байпасом (предупреждает перегрузки), и отсекающими/дренажными клапанами. Набор входящего в состав оборудования напрямую зависит от тех задач, которые поставлены перед системой нагрева. Поэтому если перед вами стоит проблема, как собрать смесительный узел для теплого пола своими руками, то первоначально рекомендуют определиться с функциональностью отопительного оборудования, а затем только закупать составляющие.

Устанавливается смесительный узел строго до контура системы. Место размещения не играет существенной роли — в комнате, где оборудован теплый пол, котельной и т.д. Хотя многие эксперты рекомендуют при обогреве свыше 2 комнат монтировать узлы подмеса локально — в обогреваемом помещении. Грамотно продумав устройство смесительного узла для теплого пола, можно организовывать водяные системы в квартирах многоквартирных домов. То есть проводить подключение вспомогательного нагрева к однотрубной системе. Также при сборке узла подмеса можно использовать двухходовые клапаны. Выяснив, из каких составляющих собирается смесительный узел для теплого пола и, разобрав принцип работы оборудования, рассмотрим схемы подключения.

Разновидности узлов смешения для теплого пола и схемы подключения

Недостаточно разобраться с тем, как самому собрать смесительный узел для теплого пола, нужно определиться с типом оборудования. На рынке можно найти:

  • Узел распределительный последовательного вида смешивания.

Этот класс подмеса сред называют наиболее энергоэффективным. Это связано с тем, что среда обратки имеет низкую t0. А это значит, что теплоотдача максимальна. Но при этом узел последовательного смешения для теплого пола еще и наиболее производителен. Доказано, что расход циркуляционного насоса поступает непосредственно в петлю, для которой осуществлялась сверка t0 среды. Благодаря этим особенностям смесительный узел этого класса подмеса является идеальным оборудованием для низкотемпературных систем.

  • Смесительный узел параллельного класса смешивания.

Применяется в системах водяных полов довольно редко, поскольку считается наименее производительным. Полный расход циркуляционного насоса поступает не в петлю водяной системы, а по разные стороны насосного узла для теплого пола, что создает существенные потери. При этом производители предлагают модели оборудования, в которых имеется и внутренние потери. Невысока и его энергоэффективность. Дело в том, что t0 среды идущей от оборудования приблизительно равна t0 настроечной среды. Поэтому эксперты не рекомендуют использовать смесительный узел для теплого пола, а устанавливать на высокотемпературные обогревательные системы.

Выбирая распределительное устройство, обращают внимание, что есть приборы последовательного подмеса с центральным и боковым смешиванием. Тип оборудования подбирается индивидуально по характеристикам системы. Устанавливая смесительный узел для теплого пола своими руками, нужно строго следовать рекомендациям производителя.

Двух- и трехходовой смесительный узел для теплого пола и схемы подключения

При организации вспомогательного нагрева воздушных масс снизу помещения можно установить своими руками смесительный узел для теплого пола с трехходовым краном или двухходовым. Схема и принцип функционирования систем будут разными. Применение двухходовых клапанов обеспечивает создание простейшей конструкции. Их также можно найти в магазин под названием питающие краны. Двухходовый узел теплого пола снабжается термоголовкой и датчиком среды жидкостного класса. Благодаря дополнительным устройствам происходит контроль t0 среды. Принцип функционирования системы будет следующим:

  • постоянно циркулирующей средой системы является обратка — охлажденная субстанция;
  • к ней при значительном остывании подается горячая жидкость от котла;
  • после подачи среды от нагревательного котла установленный своими руками узел подмеса для теплого пола выполняет смешивание субстанции.

Главное преимущество двухходовых устройств — плавность нагрева среды. Они гарантируют отсутствие перегрузок системы, поскольку обладают низкой пропускающей способностью. За счет этого применять питающий смеситель для теплого водяного пола наиболее рационально в небольших помещениях — ванная или детская комната, спальня, кухня. Для обогрева площадей свыше 60 м2 его использование неразумно.

Трехходовой насосно нагревательный узел для теплого пола выполняет две функции — балансировочного и питающего крана. Его принцип работы заключается в смешивании горячей среды с охлажденной обраткой (детально описан выше). Преимущество термосмесительного узла в возможности оборудовать систему дополнительными устройствами, позволяющими расширить ее возможности и упростить регулировку. Его считают универсальным оборудованием. Рекомендуют использовать:

  • при обустройстве водяных систем на больших площадях;
  • при снабжении отопительного оборудования погодными контролерами;
  • в системах с количеством петель от 4 и более.

Имеет трехходовой смеситель теплого пола и недостатки. Главный из них — высокая пропускающая способность. Она при малейших отклонениях в работе заслонки устройства неизбежно приведет к существенному повышению t0 среды. Неизбежны перегревы. Второй недостаток — насосный узел может приводить к скачкам температуры. Если объем среды, идущей от котла, больше объема обратки, нестабильной работы не избежать. Именно поэтому в схемах смесительного узла с трехходовым клапаном всегда присутствует дополнительное контрольное оборудование — сервопривод, датчики, контролеры и пр.

Монтаж обоих видов устройств проводится строго по схеме. А как правильно установить трехходовой клапан на теплый пол, подскажут рекомендации производителя устройства.

Как отрегулировать теплые полы водяные на узле смешивания?

После подключения трехходового клапана к теплому полу, нужно проверить его корректность установки и отрегулировать работу. Для новичка эта процедура может показаться длительной и трудоемкой, но если следовать инструкции, представленной ниже в тексте, можно избежать ошибок. На первом этапе потребуется снять сервопривод. Затем действовать так:

  • Выставить клапан в позицию 0.6 бар. Это предельное значение.
  • Выставить балансировочный клапан петли.

Рассчитываем положение по формуле .

К v6 =〈〈t 1 – t 2обр/ 〈t 2подачи – t 2обр 〉- 1〉 * К vt

Цифрой 1 обозначаются контур радиаторов, а двойкой — водяной системы. Чтобы определить, какая должна быть пропускающая способность клапана для выбранной схемы теплого пола с трехходовым клапаном, нужно подставить все известные в формулу. Учитывают, что коэффициент К=0.9.

К v6 =〈 〈t 1 – t 2обр 〉 /〈 t 2подачи – t 2обр 1〉 * К vt = ((95-35)/(45-35)-1 ) *0,9=4,05

  • Отрегулировать в соответствии с полученными данными расход и потери насоса. Провести отладку его работы непросто. Поэтому эксперты рекомендуют выставить оборудование на минимум. В ходе эксплуатации водяной системы с распределительным узлом для теплого пола станет понятно, что мощности агрегата недостаточно. Значит, добавляется скорость ровно на 1 положении. Снова тестируется система. Если опять не хватает мощности, добавляют еще на 1 положение. Так до тех пор, пока желаемая скорость среды в системе не будет выставлена корректно.
  • Настройка работы петель. Если в схеме коллектора теплого водяного пола с 3 х ходовым клапаном предусмотрен только 1 контур, этот этап можно смело пропустить. Балансировка петель выполняется только при наличии 2 и более контуров.
  • Связывание термосмесительного узла для теплого пола с другими устройствами отопления. Чтобы выполнить эту процедуру необходимо все радиаторные клапаны поставить в положение открыто.
  • Регулировка перепускного крана. Здесь выставляется значение давления на 10% больше максимального параметра насоса. Его можно посмотреть в технической документации к оборудованию.
  • Проверка функциональности насосного смесительного узла в системе. Процедура выполняется для каждой петли по отдельности. На этом этапе также рекомендуется оценить физическую работу системы нагрева воздушных масс — равномерность, прогрев холодных зон и т.д.

На этом регулировка теплых полов в смесительном узле завершена. При выявлении на каком-либо этапе отклонений проводят сброс настроек и повторную регулировку. Процедура непростая, особенно если используется самодельный смесительный узел для теплого пола, поскольку есть немалый шанс некорректного подбора оборудования и сборки конструкции. Поэтому монтаж и регулировку водяной системы (самой сложной в подключении и настройке) разумнее доверить специалисту.

Здесь приведено несколько схем подключения трехходового смесительного клапана теплого пола, а также варианты систем с двух- и 4-ходовыми элементами. Их выбор зависит от индивидуальных особенностей системы и целесообразности. Купить насосно смесительный узел теплого пола можно в специализированных магазинах. Лучшими считаются узлы смешивания для теплого пола производства торговой марки VALTEC, Uni Fitt Solomix, Oventrop, Watts и других. При выборе обращают внимание на комплектацию оборудования — с насосом и клапаном, без насоса и т.д.

Добавить комментарий