Выносные датчики температуры

Раскрываем тайны бесконтактных датчиков температуры

Датчики температуры на основе термоэлементов позволяют измерять температуру бесконтактным способом, что выгодно отличает их от традиционных термодатчиков контактного типа. Бесконтактные датчики используют инфракрасное (ИК) излучение и обычно их применяют в таких портативных устройствах как инфракрасные термометры. Еще одной привлекательной областью применения датчиков на термоэлементах является мониторинг температуры подвижных объектов. В этом случае применение стандартных контактных датчиков температуры имеет серьезные недостатки. Данная статья является обзором бесконтактных инфракрасных датчиков температуры и должна помочь разработчикам в использовании всех преимуществ этой технологии.

Рис. 1. Структура термоэлемента

Датчик изнутри

Инфракрасный датчик на термоэлементах состоит из ряда последовательно cоединенных термопар, “горячие” спаи которых прикреплены к тонкой, специальным образом обработанной пластине кремния, которая выполняет роль абсорбера – поглотителя инфракрасного излучения (рис. 1). В процессе обмена инфракрасным излучением температура абсорбера растет или падает в зависимости от разницы температур между ним и объектом (рис. 2).

Рис. 2. Устройство кремниевой линзы/фильтра

Чтобы температура объекта была измерена точно, он должен полностью перекрывать сектор обзора датчика. Это гарантирует, что воздействующее на термоэлемент (рис. 3) инфракрасное излучение приходит только от объекта измерения, а не от окружающего фона. Кроме того, использование фильтра и линзы значительно повышает качество работы инфракрасных датчиков.

Рис. 3. Датчики и модули на основе термоэлементов

Обычный кремний является абсолютно непрозрачным материалом для видимого света, но он прозрачен для излучения с длиной волны более 2 мкм, где располагается большинство спектральных выбросов при температурах ниже 500 К (200°C или 450°F). Поэтому кремний может быть использован для фильтрации видимого и ультрафиолетового (УФ) спектра для предотвращения их влияния на датчик. Для того чтобы увеличить чувствительность датчика (или расстояние, на котором датчик может измерять температуру объекта фиксированного размера), широко используются специальным образом обработанные кремниевые линзы, позволяющие сконцентрировать больше инфракрасного излучения на датчике или ограничить его сектор обзора.

Назначение и возможности датчиков

В настоящее время ИК-датчики на основе термоэлементов могут поставляться с различными линзами/ фильтрами, что позволяет использовать их в приборах разного класса и назначения, начиная от промышленных пирометров и до бытовых устройств. В зависимости от датчика, выходной сигнал может быть представлен стандартным выходным сопротивлением или аналоговым/ цифровым выходным сигналом.

Разнообразные датчики (полезные как для любителей, так и для профессиональных разработчиков), включая изделия в герметичных корпусах из нержавеющей стали и модули с выведенными проводами, сегодня продаются по доступным ценам. Все эти термоэлементы предназначены для дистанционного измерения температуры путем детектирования инфракрасной энергии объекта. Чувствительный термоэлемент, составленный из небольших термопар на кремниевом чипе, поглощает энергию и генерирует выходной сигнал. В комплект приборов входит также источник опорного напряжения в качестве эталона для коррекции.

Датчик TPS334

Изготавливаемый компанией Excelitas детектор TPS334 – это стандартный датчик, который использует пластину размером 0,7 x 0,7 мм 2 в качестве абсорбера и термистор на 30 кОм в качестве опорного источника температуры (рис. 4). Круглое окно оснащено инфракрасным фильтром на 5,5 мкм с пропусканием длинноволновой части спектра. TPS334 выпускается в корпусе типа TO-5.

Рис. 4. TPS334 (слева) и расположение выводов (справа)

Датчик A2TPMI

A2TPMI – еще один термоэлемент производства Excelitas. Это универсальный инфракрасный датчик с интегрированной специализированной микросхемой для обработки сигналов и компенсации температуры окружающей среды. Этот интегрированный инфракрасный модуль воспринимает тепловое излучение объектов и преобразует его в аналоговое напряжение. Благодаря внутренней обработке цифрового сигнала и 8-разрядному разрешению внутренних регистров управления A2TPMI имеет повышенную точность регулировки и улучшенные характеристики. Примененная технология E2PROM обеспечивает неограниченное количество изменений в конфигурации. A2TPMI является удачным выбором и для любительских конструкций благодаря интеграции датчика и электроники в компактном корпусе ТО-39. Функциональная схема A2TPMI показана на рис. 5.

Рис. 5. Функциональная схема A2TPMI

Датчик MLX90614

Очень популярным инфракрасным термометром для бесконтактного измерения температуры является MLX90614 производства компании Melexis (рис. 6). Он представляет собой сочетание в одном 4-контактном корпусе ТО-39 инфракрасного высокочувствительного детектора на термоэлементах и специализированного стандартного формирователя сигналов. Этот термометр включает в себя малошумящий усилитель, 17-разрядный аналого-цифровой преобразователь и мощный процессор цифровых сигналов. Он откалиброван на заводе-изготовителе с возможностью использования на цифровом выходе широтно-импульсной модуляции (ШИМ) и системной шины управления (SMBus).

Читайте также:  Конвекторы stiebel eltron

Рис. 6. Конфигурация выводов MLX90614*

  • Bottom view – Видснизу
  • Pin name – Вывод
  • Function – Функция
  • Serial clock … – Вход синхросигнала для 2-проводного коммуникационного протокола. На этом выводе MLX-90614 Axxx установлен стабилитрон на 5,7 В для подключения биполярного транзистора из состава внешнего источника питания напряжением 8…16 В
  • Digital input/ … – Цифровой вход/выход. В стандартном режиме измерения температуры объекта на этом выводе представлен сигнал с ШИМ. В режиме, совместимом с шиной SM, этот вывод автоматически конфигурируется как открытый сток NMOS
  • Exetnal … Внешний источник питания
  • Ground … – Общая шина. Металлические части могут соединяться с этим контактом.

Замечания по проектированию

Подключить к микроконтроллерам термоэлементы с последовательным интерфейсом, такие как A2TPMI, не очень сложно. Тем не менее, для датчиков без встроенного процессора (например, TPS334), может возникнуть необходимость в добавлении внешней схемы обработки сигнала на основе высококачественного операционного усилителя с малым уровнем шума, каким является LTC1050/1051. Еще одним экономичным и хорошим вариантом для любительского конструирования является модуль инфракрасного датчика температуры TMP006 производства Texas Instruments (рис. 7). Оригинальная принципиальная схема модуля показана на рис. 8.

Рис. 7. Плата с датчиком TMP006

Рис. 8. Схема TMP006

Эксплуатация и текущее обслуживание

Поскольку датчики на термоэлементах чувствительны к зарядам статического электричества, запасные неиспользуемые датчики должны храниться в токопроводящей упаковке для защиты от статических разрядов и статических полей. Превышение абсолютных максимальных уровней напряжения и подключенный в обратной полярности источник питания повреждают датчик. Кроме того, датчики на основе термоэлементов не должны подвергаться воздействию прямых солнечных лучей или влаги. Будьте осторожны при обращении с этими датчиками и не прикасайтесь к оптическому окну. Жировые выделения кожи, пыль или грязь могут негативно повлиять на работу датчика. В таких случаях оптическое окно (фильтр и линза) следует очищать с помощью спирта и ватного тампона.

Вместо заключения

Возможность считывать температуру объекта, даже не прикасаясь к нему, открывает удивительные перспективы. Инфракрасные датчики на основе термоэлементов обладают наилучшим сочетанием характеристик, включая малый размер, пониженное энергопотребление и малую стоимость конечного прибора для бесконтактного измерения температуры. Правда, их не так легко реализовать, как традиционные контактные измерители температуры.

Виды датчиков температуры и принцип их работы

Датчики измерения температуры используются для контроля веществ в твердом, жидком или газообразном состоянии. В зависимости от целей применения, схема строения прибора будет видоизменяться. Но чтобы выбрать подходящий инструмент необходимо обращать внимание на одни и те же нюансы.

Виды, конструкция и принципы действия

Термопара

Датчик включает в себя две проволоки из разных металлов, спаянных между собой. Для отношения концов друг с другом в зоне постоянной температуры, в конструкцию добавляют удлиняющие провода из двух металлов. Когда на концы проводов действуют разные температуры (например, при помещении датчика в горячую воду), то в цепи появляется электрический ток. Сила возникшего тока (от 40 до 60 мкВ) зависит от используемого материала термопары, который влияет на термоэлектрическую силу прибора.

В практике можно встретить железоникелевые, хромоалюминиевые, медно-константановые и так далее. В дешевых моделях используются неблагородные металлы (аналогичных термоэлектродам) для удлиняющих проводов, а в дорогих – благородные металлы, которые способы развивать аналогичную термо-ЭДС, что и электроды (необходимо для уменьшения стоимости высококлассным приборов).

Термопара относится к датчикам с высокой точностью. Проблемой устройства является сложность получения замеренного значения. Термопара действует по принципу относительности отличия температур между разъемами. Горячий спай помещается в замеряемое вещество, а холодный остается находиться в окружающей среде.

При необходимости использования термопары работа проводится следующим образом. Температуру холодного спая необходимо компенсировать, для чего вторую термопару помещают в среду с известным показателем.

Если используется программный способ компенсации, второй датчик помещается в изометрическую камеру, где находятся холодные спаи, что позволяет контролировать температуру с высокой точностью. Самое сложное в работе с одноконтактной термопарой – снять показатели.

В ГОСТе прописаны коэффициенты, необходимые для перевода ЭДС в показатель температуры и наоборот. Подсчет также может вестись при помощи контроллера.

Но получаемый от термопары показатель ЭДС измеряется в единицах и сотнях микровольт. Поэтому использование аналоговых преобразователей не будет успешным. Для сборки специальной конструкции, цель которой – получение точных результатов, потребуются малошумящие аналоговые преобразователи.

Читайте также:  Конвекторы thermor

На практике для устранения имеющихся погрешностей используют автоматическое введение поправки на температуру свободных концов. Под этим подразумевают введение моста с плечами в виде медного и манганинового терморезисторов.

Терморезисторы

Терморезисторы делятся по типу зависимости сопротивления от температуры. Они могут быть отрицательными (NTC) или положительными (PTC).

Измерения легче проводить при помощи терморезисторов. Принцип работы построен на сопротивлении материалов внешней температуре. Высокая точность присуща для приборов, изготовленных из платины. На работу терморезисторов влияют две характеристики.

Первая – базовое сопротивление, второе – температура, при которой оно определяется. ГОСТ устанавливает, что определение должно проходить при 0 градусов по Цельсию. В нормативном документе указывается, что рекомендуется использовать несколько номиналов сопротивлений, определяемых в Омах, а также температуры, что позволит сопоставить результаты при 0°С и другом показателе. Для этого используется следующая формула:

Температурный коэффициент будет изменяться в зависимости от используемого материала для термометров, что отражено в ГОСТе. В нормативном документе также указываются коэффициенты полинома, необходимые для расчета в зависимости от текущего сопротивления.

Термометры сопротивления обладают одним минусом – низкий температурный коэффициент сопротивления. Несмотря на этот нюанс, использование терморезисторов проще по сравнению с принципом работы термопары.

Способы измерения будут зависеть от комплектации модели. Базовые терморезисторы необходимо включать в цепь с источником тока и контролируемого дифференциального напряжения. Чтобы корректно определить доли единицы процента получаемых от температурного коэффициента проводников, лучше использовать аналого-цифровые преобразователи.

Если в датчик уже встроен аналоговый выход, соответствующий питаемому напряжению, то для оцифровывания можно напрямую подключать терморезистор к преобразователю

Комбинированные

Комбинированные датчики включают в себя несколько полупроводников, объединенных в единое устройство. Датчики могут иметь встроенный цифровой интерфейс, а не только интегральные схемы с выходом. Часто используется комбинированный датчик благодаря возможности подключения параллельных устройств. Погрешность при расчете температуры равна 2 °С, а при определении влажности – 5%. Проблема в таком датчике одна – оптимизация интерфейса.

Цифровые

В цифровых датчиках устанавливается трехвыводная микросхема. Показатели считываются с нескольких параллельно работающих датчиков, что позволяет получить показания с точностью 0,5 °С. Работа электронного термометра возможна от -55 до +125 °С. Единственным минусом устройства является скорость получения результатов – 750 секунд для получения максимально точного показателя. Определение точности прибора осуществляется при помощи соответствующих регулировок, которые необходимы для уменьшения количества затрачиваемого времени на получение результата. Опрос датчика не имеет смысла, так как корпус является инерционным.

Бесконтактные

Работа датчика основана на нагревании тонкой пленки, что осуществляется благодаря воздействию инфракрасных лучей. Встретить подобную технологию можно в пирометрических устройствах. В отличии от контактного, получить данные можно на расстоянии.

Кварцевые преобразователи температуры

Если диапазон изменяемых температур превышает стандартные значения и достигает отметки от -80 до +250°С, то используются кварцевые преобразователи. Такие устройства работают на принципе взаимодействия кварца и температуры, отражаемого частотной зависимостью. Преобразователь имеет несколько функций, которые меняются в зависимости от расположения среза по осям кристалла.

Кварцевые датчики отличаются высокой точностью, стабильностью и разрешением. Являются более перспективными способами измерения температуры. Часто можно встретить в цифровых термометрах.

Шумовые

Шумовой датчик служит для получения показателей по принципу разности потенциалов на резисторе, которые меняются в зависимости от температуры. На практике подобный способ измерения имеет условие – одна из температур должна быть известна, а вторая — измеряемая. Два полученных шума от различных температур сравнивают и находят искомое значение.

Работа датчика возможна от -270 до +1100 °С. Из преимуществ отмечается возможность измерения температур в термодинамике. Но минусом является сложность реализации такого способа измерения напряжения шумом из-за наличия различий с шумом усилителя.

Ядерного квадрупольного резонанса

Принцип работы биметаллического термометра основывается на действии градиента поля тока решетки кристалла и момента ядра, вызванного отклонением заряда от симметрии сферы. При помощи такого процесса создается процессия ядер. Частота напрямую зависит от градиента поля решетки. В зависимости от вещества, величина показателя может подниматься до нескольких тысяч МГц. Чем выше температура, тем меньше частота ЯКР.

ЯКР образует ампулу с веществом, которая помещается в обмотку индуктивности для дальнейшего соединения с контуром генератора. Если частота генератора и частота ЯКР совпадают, то исходящая от генератора энергия поглощается. При измерении вещества с температурой -263°С погрешность составляет 0,02 градуса, а при температуре 27°С, погрешность равна 0,002 градуса. Из преимуществ датчика выделяют неизменную стабильность. Минусом является значительная нелинейность преобразующей функции.

Читайте также:  Термостат теплого пола с датчиком

Объемные преобразователи

Принцип работы иного рода биметаллического термометра построен на свойстве веществ расширяться и сжиматься в зависимости от действующей температуры. Диапазон действия преобразователя определяется в зависимости от стабильности материала. Датчик может использоваться при температурах от -60 до +400°С. Погрешность составит от 1 до 5%.

При определении температуры датчиками на жидкости погрешность падает до 1-3% в зависимости от температурной среды. Температура закипания и замерзания жидкости также будет влиять на интервал работы датчика.

Если датчик измеряет преобразователи на газе, то граница измерения зависит от точки перехода газа в жидкое состояние и стойкостью баллона в воздействующей температуре.

Канальный

Все цифровые термометры относятся к канальным, так как для передачи сигналов они используют каналы. В зависимости от количества таких “магистралей” определяется канальность устройства. Так термометр Testo 925 относится к 1-канальным, в основе работы лежит термопара, как и у термометра Testo 735-2 – 3-канального. А Testo 810 – 2-канальный прибор с инфракрасным термометром.

Параметры выбора

Чтобы осуществить корректный выбор подходящего термометра, необходимо определить несколько условий, которые должны соответствовать для комфортной работы прибором.

Диапазон рабочей температуры

Необходимо знать, в каких температурах будет задействован термометр. Также нужно определить, какая погрешность будет приемлемой при получении результатов. Если диапазон температур небольшой, то подойдут термисторы. В самых суровых условиях работоспособны преимущественно шумовые приборы.

Условия проведения замеров

Возможно ли поместить термометр в среду или материал, который нужно заменить. Если нет, то получить данные можно при помощи радиационных термометров, которые замеряют температуру сквозь препятствия.

Время работы до калибровки или замены

Установить условия работы датчика. Окружающая обстановка может быть стандартной, с высокой влажность, окислительной, пожароопасной и так далее.

Величина сигнала выхода

Сигнал выхода должен соответствовать возможностям электроизмерительных приборов для дальнейшей обработки получаемых данных. Зависит это от полученных показателей температуры, преобразуемых в энергию.

Другие технические данные

Также при определении подходящего типа датчика температуры необходимо обращать внимание на второстепенные факторы. Эти нюансы позволяют выбрать самый подходящий аппарат для получения необходимых данных.

Погрешность

Для получения самых точных результатов потребуется большое количество времени. Лучший показатель выдает биметаллический термометр, построенный по принципу ЯКР и цифровые. Первые – быстрее, а вторые – точнее.

Разрешение

Этот показатель позволяет получить от датчика более точные приращениям дискретности измерения температуры. Ярким представителем является DS18B20, который может работать в разрешении 9,10,11 и 12 бит. Самый малый режим даст 0.5°C, а максимальный — 0.0625°C.

Напряжение

На величину выходного напряжения будет влиять сопротивление резистора. В зависимости от этого напряжение может быть линейным (изменяться в зависимости от температуры) и нелинейным. Для каждого датчика существуют свои эталонные величины на выводах термометра, который зависит от температуры измеряемого объекта.

Время сработки

Показатель отвечает за скорость получения результатов замера. Как правило, быстрые замеры можно получить, имея крупную погрешность. Для устранения этого недостатка потребуется пренебречь временем сработки и увеличить его до необходимого показателя точности.

Промышленные термодатчики и сенсоры

Кроме стандартных бытовых термодатчиков бывают промышленные, которые используются исключительно на специальных объектах. Их распространение направлено на определенную группу лиц из-за избыточных возможностей, которые требуются только на производстве. Некоторые из них способны работать в различных нетрадиционных средах и суровых условиях. Выбор подходящих типов осуществляется тем же образом, что и для подбора бытовых датчиков.

Применение

Стоит понимать, что каждый из типов датчиков создан для использования в специальных условиях. Практически во всех сферах производства и жизни требуется знать температуру. Так применять термисторы необходимо для получения абсолютных показателей, для сбора показателей в помещениях – шумовые, для получения максимально точных данных – цифровые и так далее.

Мир датчиков температур охватывает все сферы жизни, где требуется измерение показателей. Это может быть помещение, жидкость или предмет с совершенно различными нюансами. В одних помещениях высокая влажность, в другие нельзя попадать. Аналогичные параллели можно проводить с жидкостями и объектами. При выборе подходящего термометра необходимо обращать внимание на нюансы условий измерения.

Добавить комментарий