Принцип работы и устройство солнечной батареи – полный обзор

Солнечные батареи: сфера применения и принцип работы оборудования

Если раньше люди были зависимы от централизованного энергоснабжения, то сейчас у всех есть хорошая альтернатива – солнечные батареи. Такое оборудование идеально для установки в частных домах, дачах, на промышленных объектах. Электростанции стали доступнее по цене и разнообразнее по видам и мощности. В этой публикации мы детальнее рассмотрим принцип работы солнечной батареи, ее виды и преимущества использования в быту и на производстве.

Устройство и история появления солнечных батарей

Человечество уже давно задумывалось об использовании неиссякаемой энергии солнца. Первые попытки предпринимались еще в двадцатом веке. Тогда была разработана концепция термальной электростанции. Однако на практике она показывала очень низкую эффективность, ведь концепция подразумевала трансформацию энергии солнца. Проанализировав первую неудачу, ученые пришли к выводу, что необходимо использовать солнечные лучи напрямую. Такой принцип был открыт в 1839 году. Его основал Александр Беккерель. Однако до появления первых полупроводников прошло немало лет. Они были изобретены лишь в 1873 году. Этот год можно назвать началом работы над современными прототипами электростанций.

Если говорить о том, из чего состоит солнечная батарея, то изначально стоит упомянуть фотоэлементы. Их можно назвать маленькими генераторами. Именно они выполняют основную функцию – собирают энергию солнца. Сегодня есть несколько видов солнечных панелей, о которых будет рассказано в следующем разделе. Однако, независимо от вида, современная панель представляет собой основу определенного размера, на которой размещаются вышеупомянутые фотоэлементы. Эти элементы очень хрупкие, поэтому они дополнительно защищаются стеклом и полимерной подложкой.

Однако солнечные панели – это лишь часть всей электростанции. Также в нее входят другие элементы:

  1. Аккумуляторная батарея.
  2. Контролер заряда.
  3. Инвертор.
  4. Стабилизатор.

Каждый из перечисленных устройств выполняет свою функцию. Аккумулятор – накапливает и хранит добытую энергию, контролер – контролирует мощность, подключает и отключает батарею, анализируя уровень заряда. Инвертор называют еще преобразователем. Это оборудование превращает прямой ток в переменный. Благодаря ему электричество можно использовать для бытовых целей. Последней составляющей электростанции является стабилизатор. Он защищает всю систему от скачков напряжения.

солнечнечные батареи на крыше

Какие виды солнечных батарей существуют?

Есть несколько классификационных признаков, по которым все солнечные панели делятся на разные виды:

  1. Тип устройств.
  2. Материал изготовления фотоэлектрического слоя.

По типу устройства выделяют два вида: гибкие и жесткие. Первый тип отличается своей пластичностью. Такую панель можно легко скрутить в трубочку, ничего не повредив. Твердая панель не меняет своей формы. По материалу изготовления есть три вида: аморфные, поликристаллические, монокристаллические.

Аморфные батареи могут быть гибкими. Они непривередливы к месту установки, но КПД такого устройства очень низкий. Он составляет не более шести процентов. Поликристаллические изделия отличаются низкой ценой. Однако они более эффективны в пасмурную погоду. В очень жаркую погоду их выработка снижается чуть больше чем у монокристаллических модулей.

Если необходим максимальный эффект от электростанции, то следует отдавать предпочтение панелям с монокристаллическими элементами. Уровень их КПД достигает двадцати пяти процентов. Монокристаллические панели являются более дорогими, так как монокристаллический кремний при производстве требует больших энерго и временных затрат.

виды солнечных батарей

Сфера применения солнечных батарей

С разработкой новых технологий и развитием концепции питания от солнечной энергии сфера применения панелей стала довольно широкой. Раньше такие устройства обычно устанавливались на небольших частных домах или дачах. Они применялись исключительно в бытовых нуждах, так как потребляемая мощность была минимальная. Сейчас же есть мощнейшие электростанции, показывающие высокую эффективность работы. По этой причине сфера применения панелей стала больше.

Интересный факт! Энергии, которую выделает Солнце за одну секунду, может хватить для обеспечения электричеством всего человечества на пятьсот тысяч лет.

Солнечные батареи стали активно применяться на промышленных и коммерческих объектах, позволяя значительно экономить на их энергоснабжении. Также панели устанавливают на сельскохозяйственных предприятиях, на фермах, военно-космических объектах. Менее мощные панели применяются для изготовления различных приспособлений для быта: фонариков, калькуляторов, зарядных устройств, др. Они служат источником энергии там, где нет возможности подключиться к центральной сети. Такие приспособления пользуются большим спросом у охотников, рыбаков, любителей походов.

Важно! Солнечные электростанции современного образца будут эффективны везде: как в доме, так и на большом промышленном объекте. Однако для этого они должны быть правильно подобраны по необходимой мощности. Расчет данного параметра должен осуществляться специалистом.

Как работает солнечная панель: принцип работы устройства простым языком

Если предстоит покупка солнечных батарей, то нужно обязательно ознакомиться не только с их устройством, но и с принципом работы. Итак, как работает солнечная панель? Несмотря на внешнюю простоту устройства, принцип работы такой электростанции довольно сложный. Он основан на фотоэлектрическом эффекте, который достигается при помощи фотоэлементов.

Солнечные панели собирают лучи. Они попадают на фотоэлектрический слой. Солнечный свет приводит к высвобождению электронов из двух слоев. На освободившиеся место из первого слоя встают электроны второго слоя. Происходит постоянное движение электронов, что приводит к естественному образованию напряжения на внешней цепи. В результате один из фотоэлектрических слоев приобретает отрицательный заряд, а второй – положительный.

Эти действия приводят в работу аккумулятор. Он начинает набирать и хранить заряд. При этом уровень заряда аккумулятора постоянно контролируется. Если он низкий, контролер включает в работу солнечную панель. В случае высокого заряда это же устройство панель отключает. Далее включается в работу инвертор. Он преобразовывает ток из постоянного в переменный. С его помощи на выходе электростанции появляется напряжение в 220 В. Это дает возможность подключать и питать от электростанции бытовые приборы.

строение солнечного электроснабжения

Подключение солнечной панели

Эффективность и правильность работы солнечных батарей зависит не только от их вида, мощности, но и от установки и подключения. Должна быть разработана правильная схема подключения всех элементов электростанции и грамотно выбрано место для установки солнечных панелей. Такую работу можно доверять только профессионалам.

Не секрет, что выходное напряжение одной панели относительно невысокое. Обычно используются несколько батарей одновременно. Все панели должны подключаться параллельно-последовательным способом. Такой тип подключения позволяет обеспечивать максимальную эффективность работы оборудования.

подключение солнечной панели

Преимущества, недостатки панелей

Солнечные батареи стали дешевле, что сделало их доступнее для более широкого круга потребителей. Однако перед покупкой каждый человек должен детально ознакомиться с преимуществами и недостатками этого источниками энергоснабжения. Среди его неоспоримых достоинств стоит отметить следующие:

  • экологическая безопасность. В наше время экология – это одна из насущных проблем. Солнечные электростанции работают без вреда окружающей среде. Они не выделяют при работе вредных веществ;
  • быстрая окупаемость. Стоимость электричества, как для бытовых пользователей, так и для предприятий, постоянно растет. С установкой панелей удается полностью или частично перейти на альтернативный источник энергии, являющийся абсолютно бесплатным и доступным каждому. Благодаря этому, покупка и установка оборудования окупается за считанные годы работы;
  • легкость использования электростанции. Несмотря на сложное устройство и принцип работы, эксплуатировать станцию довольно просто. Главное – следить за исправностью ее составляющих и не экономить на обслуживании, которое требуется не так часто;
  • быстрая установка. Профессионалы монтируют все элементы станции буквально за несколько часов или дней (в зависимости от количества панелей, мощности, др.). Больше времени занимает подбор составляющих и покупка оборудования.

Недостатки у таких установок тоже имеются. Самый основной заключается в дороговизне оборудования. Однако не стоит забывать, что большой вклад при покупке быстро окупится многолетним бесплатным использованием энергии солнца. Вторым серьёзным недостатком солнечных панелей является их зависимость от внешних факторов. Эффективность их работы зависит от погоды, температурных условий, положения по отношению к Солнцу, от чистоты поверхности.

преимущества и недостатки солнечных панелей

Как достичь максимальной эффективности работы батарей?

Солнечную электростанцию имеет смысл ставить только в регионах с длительным световым днем. Там, где день короткий, можно применять панели только в качестве дополнительного источника света, но не основного. Как уже было замечено, разные виды солнечных батарей имеют свой КПД. Чтобы добиться максимального эффекта, следует выбирать устройства с максимальной производительностью, несмотря на их дороговизну.

Большую роль будет играть правильность расчета мощности всей установки. Это позволит подобрать необходимый размер и количество панелей, мощность других комплектующих станции. Также залогом эффективной работы панелей является мощный аккумулятор. В системе должно быть два аккумулятора, особенно в зимнее время года. Второй аккумулятор позволит накапливать достаточно энергии для обеспечения электричеством объекта в короткие световые дни.

Нельзя забывать и о других факторах, которые влияют на работу станции. Панели должны быть расположены под правильным углом, их нужно обязательно держать в чистоте. В противном случае, КПД батарей будет значительно снижаться.

Принцип работы солнечной батареи: как устроена и работает солнечная панель

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

Солнечные батареи: терминология

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Установка из солнечных панелей позволяет рационально использовать бесплатную, к тому же неисчерпаемую энергию солнечных лучей

Миниатюрные электростанции, собранные из солнечных батарей, обеспечат энергией неэлектрифицированные объекты и дома, расположенные в регионах с перебоями в поставке электричества

Установки, перерабатывающие УФ излучение в электроэнергию, занимают минимум места. их располагают на крышах домов, хозпостроек, гаражей, беседок, веранд. Реже их располагают на открытых, не занятых постройками и насаждениями площадках

Солнечные батареи – незаменимое оборудование для любителей путешествий. Оно обеспечит энергией вдали от источников электропитания

Использование солнечной энергии предоставит возможность существенно сократить затраты на содержание дач и загородных домов. собрать и установить экономически полезную систему без затруднений можно собственными руками

Расположенные на корме яхты, палубе корабля или носу катера солнечные батареи обеспечат электроэнергией, благодаря которой можно поддерживать стабильную связь с берегом

Портативная солнечная панель с аккумулятором исключит возникновение экстремальных ситуаций вдали от населенных пунктов, гарантирует зарядку мобильных устройств для общения с близкими

Выпускаемые специально для походов легкие компактные зарядные устройства на основе солнечных батарей обеспечат энергией телефоны, рации, планшеты и медиа-технику

Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя, т.е. солнечные панели используют для отопления дома.

Солнечная батарея

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Принцип работы солнечной батареи

Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор

Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

Внутреннее устройство гелиобатареи

Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

Солнечная батарея

Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

Виды солнечных батарей

Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

  1. Монокристаллические.
  2. Поликристаллические.

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

Солнечные электростанции для автономного электроснабжения собирают из солнечных панелей, составной частью которых является полупроводниковый фотоэлемент

По способу производства и непосредственно связанной с ним эффективности фотоэлементы делят на моно- и поликристаллические виды

Монокристаллические варианты производятся из цельного кристалла, выращенного в лабораторных условиях. Они темнее, внешне выглядят как прямоугольник со скошенными углами

Фотоэлементы из монокристаллического кремния генерируют энергию с КПД в 20-22%. По стоимости они дороже поликристаллических

Для устройства автономной электростанции можно приобрести как отдельные фотоэлементы для самостоятельной сборки, так и батареи в собранном и подготовленном к монтажу виде

Поликристаллические фотоэлементы изготавливаются из кремния, полученного путем расплава и дальнейшего отвердевания. Внешне это прямоугольники с четкими геометрическими формами, цвет у них светлее и синее, производительность меньше – до 18%

Собирают солнечные батареи из фотоэлементов обоих типов по общим правилам. В готовом к установке модуле должно быть 36 или 72 штук

Сборка как моно-, так и поликристаллических фотоэлементов производится пайкой с лицевой и тыльной стороны. Соединяют их последовательно

Читайте также:  Навес над мангалом из металла

У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

Устройство солнечной батареи

В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Настоящим прорывов в области использования солнечной энергии стала разработка гибких панелей с аморфным фотоэлектрическим кремнием:

В изготовлении гибких солнечных батарей кремний слоями напыляется на полимерную пленку или металлическую фольгу. Правда их КПД в два раза ниже, чем у кристаллических

Изобретение гибких солнечных панелей существенно расширило сферу использования. К тому же они прочнее и легче поли- и монокристаллических элементов

В продаже появились портативные зарядные устройства, выполненные на основе гибкой батареи. Устройство снабжено аккумулятором для накопления заряда

Гибкие модели солнечных батарей лишены основного недостатка кристаллических фотоэлементов – хрупкости. Их без опасений можно брать в походы, дальние путешествия, морские прогулки

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

Работа фотоэлектрического преобразователя

Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

Работа солнечной батареи

Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

  • температуры воздуха и самой батареи;
  • правильности подбора сопротивления нагрузки;
  • угла падения солнечных лучей;
  • наличия/отсутствия антибликового покрытия;
  • мощности светового потока.

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

Параллельное и последовательное подсоединение

Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

  1. Гелиопанели.
  2. Контроллер. .
  3. Инвертор (трансформатор).

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

Аккумуляторы для гелиопанелей

Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы

Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен инвертор. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Выводы и полезное видео по теме

Принципы работы и схемы подключения солнечных батарей не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

Как устроены солнечные батареи смотрите в следующем видеоролике:

Сборка солнечной панели из фотоэлементов своими руками:

Каждый элемент в системе солнечного электроснабжения коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.

В ходе изучения материала появились вопросы? Или вы знаете ценную информацию по теме статьи и можете сообщить ее нашим читателям? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

Принцип работы солнечной батареи, что такое солнечная батарея

Солнечная батарея – это источник постоянного электрического тока от преобразованной энергии солнца при помощи фотоэлементов.

Фотоэлементы – это преобразователи энергии фотонов в ток.

Фотоны – это элементарная частица, не имеющая массы покоя.

Рисунок №1. Солнечная батарея для обеспечения бытовых потребностей в электроэнергии.

Солнечная батарея для обеспечения бытовых потребностей в электроэнергии

История создания солнечной батареи

В 1839 году Антуаном – Сезаром была представлена батарея, которая преобразовывала энергию Солнца в ток.

В 1877 году Адамс и Дей открыли выработку электричества селеном при действии на него солнечных лучей.

В 1905 году Альберт Эйнштейн описал фотоэффект.

В 1954 году был создан элемент солнечной батареи, выполненной из кремния Гордоном Пирсоном, Кэпом Фуллером и Дэррилом Чапиным.

Виды солнечных батарей

В настоящее время солнечные батареи представлены несколькими вариантами в зависимости от типа их устройства, и от материала, из которого изготовлен фотоэлектрический слой.

I. Классификация по типу их устройства:

  1. 1. Гибкие;
  2. 2. Жёсткие.

II. В зависимости от материала, из которого изготовлен фотоэлектрический слой выделяют:

1. Солнечные батареи, фотоэлемент которых выполнен из кремния. Они в свою очередь бывают монокристаллическими, поликристаллическими и аморфными. Монокристаллические панели достаточно дорогой вариант, но они отличаются высокой мощностью.

Поликристаллические дешевле, чем монокристаллические панели. Такие панели медленней теряют свою эффективность с увеличением сроков службы, а так же при нагревании.

Аморфные представлены в основном тонкопленочными панелями. Такое устройство солнечной батареи позволяет генерировать солнечный свет, даже в плохих погодных условиях;

2. Солнечные батареи, фотоэлемент которых выполнен из теллурида кадмия;

3. Солнечные батареи, фотоэлемент которых выполнен из селена;

4. Солнечные батареи, фотоэлемент которых выполнен из полимерных материалов;

5. Из органических соединений;

6. Из арсенида галлия;

7. Из нескольких материалов одновременно.

Основные типы, которые получили распространение, это многопереходные кремниевые фотоэлементы.

Фотоэлементы, выполненные из кремния, отличаются высокой чувствительностью к нагреванию, компактностью, надежностью и высоким уровнем КПД (коэффициента полезного действия).

Другие материалы не получили широкого распространения в связи с большой стоимостью.

Устройство солнечной батареи

Рисунок №2. Схема солнечной батареи.

Для того, чтобы солнечная батарея была способна преобразовывать свет солнца в ток, необходимы следующие элементы:

  1. Фотоэлектрический слой, который играет роль полупроводника. Представлен двумя слоями разных по проводимости материалов. Здесь электроны способны переходить из области p(+) в область n (-). Это называется p-n переход;
  2. Между двумя слоями полупроводников помещен элемент, который является по своей сути преградой для перехода электронов;
  3. Источник питания. Он необходим для подключения к элементу, препятствующему переходу электронов. Он преобразовывает движение заряженных электронов, т.е. создает электрический ток. Аккумуляторная батарея. Аккумулирует и хранит энергию;
  4. Контролёр заряда. Основной его функцией является подключение и отключение солнечной батареи исходя от уровня заряда. Более сложные устройства способны контролировать максимальный уровень мощности;
  5. Преобразователь прямого тока в переменный (инвертор);
  6. Устройство, стабилизирующее напряжение. Обеспечивает защиту системы солнечной батареи от скачков напряжения.

Принцип работы солнечной батареи

Рисунок №3. Схематическое изображение принципов работы солнечной батареи.

Принцип работы солнечной батареи основан на фотоэлектрическом эффекте.

Солнечный свет (лучи), попадая на фотоэлектрический слой, полупроводниковых пластин приводит к высвобождению излишних электронов из обоих слоёв (n и p). На место оставшееся после освобождения электронов в одном слое встают освобожденные электроны другого слоя. Таким образом, происходит постоянное передвижение электронов из одного слоя в другой через p-n переход.

В результате этого на внешней цепи начинает появляться напряжение. Слой p становится положительно заряженным, а слой n – отрицательно.

Аккумулятор в ходе этих действий начинает набирать заряд.

Контролёр заряда подключает солнечную батарею, если заряд аккумулятора низкий. И выключает её, в случае, когда аккумулятор заряжен. Также контролер не даёт течь обратному току в то время, когда отсутствует солнце.

Трансформатор прямого тока в переменный необходим для преобразования постоянного тока в переменный с напряжением 220 В. Он бывает двух видов:

  • Сетевой тип инверторов. Обеспечивает работу только в дневное время суток и тех приборов, которые присоединены к нему самому;
  • Автономный тип. Применяется в устройстве элементов солнечной батареи, с наличием аккумуляторной батареи. Они предназначены для работы систем бесперебойного питания.

Это Интересно! Солнечной энергии, выделяемой за 1 секунду, достаточно для удовлетворения потребностей всего человечества на полмиллиона лет!

Преимущества и недостатки использования солнечной батареи

К преимуществам использования солнечной батареи относят:

  1. Экономическую выгоду. Электроэнергия, поставляемая от энергии солнца, бесплатная;
  2. Экологическая безопасность. Работа солнечной батареи не связана с выбросом вредных веществ в атмосферу;
  3. Установка системы солнечной батареи является быстро окупаемой;
  4. Простота эксплуатации и установки.

К недостаткам относят:

  • Дороговизна установки;
  • Маленькие фотоэлементы не обеспечивают всех потребностей в электроэнергии одной семьи;
  • Эффективность их работы зависит от многих факторов, таких как:
    1. Погодных условий;
    2. Температуры на улице и степени нагрева солнечной батареи;
    3. Грамотного выбора всех комплектующих для обеспечения требуемых параметров;
    4. Мощности потока света;
    5. Ориентации солнечной батареи к положению Солнца;
    6. Чистоты панелей.

Применение солнечной батареи

Постепенно происходит внедрение солнечной батареи во многие отрасли жизнедеятельности человека.

Например, солнечные батареи используются:

  • В автомобилестроении;
  • В промышленных объектах;
  • В сельском хозяйстве;
  • На военно-космических объектах;
  • В бытовых нуждах;

Это Интересно! Одним из первых вариантов появления прибора с солнечной батареей был калькулятор, способный работать только при попадании на его фотоэлемент солнечных лучей.

Сейчас солнечными батареями оснащают некоторые модели походных рюкзаков. Они служат источником света, электричества в условиях отсутствия цивилизации.

Использование солнечной батареи как источника электроэнергии интересует все большее количество людей, причем не только в бытовых нуждах, но и для обеспечения электроэнергией предприятий. Для того чтобы эта система была эффективной необходимо знать ее устройство и принцип работы. Это поможет подобрать компоненты в зависимости от желаемой мощности установки.

Все о солнечных батареях

Оглавление статьи: Все о солнечных батареях

Планета Земля и вся зародившаяся на ней жизнь прошла не малый путь эволюции. Солнце обеспечивало энергией все живое и неживое, на протяжении всего периода существования планеты. В 21 столетии мы научились неплохо взаимодействовать с солнечным светом и использовать его в качестве альтернативной энергетики. Для этого инженерами были разработаны и внедрены в эксплуатацию солнечные батареи.

Читайте также:  Наполнение угловых шкафов : внутренний дизайн с ящиками внутри, размеры

Принцип работы

Солнечные панели

Конструкция множества солнечных батарей сделана по принципу, что они в физическом смысле являются фотоэлектрическими преобразователями. Электрогенерирующий эффект проявляется в месте «p–n» перехода.

Чтобы сконцентрировать в себе солнечную энергию, полупроводники выполнены в форме панелей. По этой причине эти конструкции получили одноимённое название в независимости от их формы (гибкие или статичные) — солнечные панели.

По какому принципу работают солнечные панели и системы на их основе? Панель включает в себя 2 кремневые пластины с различимыми друг от друга свойствами. Процесс вырабатывания электроэнергии происходит так:

  1. Воздействие солнечных лучей на первую приводит к недостаче электронов.
  2. При воздействии на вторую пластину, та получает избыток электронов.
  3. К пластинам подведены полосы из меди, проводящие ток.
  4. Полосы подключаются к преобразователям напряжения с встроенными АКБ.

Принцип работы панелей

Основа — это кремниевые пластины. Но чтобы данную конструкцию использовать в качестве источника бесперебойного питания (а не только во время солнцестояния), к ней подключаются не дешевые аккумуляторы (с их помощью подключенные к сети объекты расходуют энергию ночью).

В промышленности конструкция для поглощения энергии Солнца сделана из многочисленных ламинированных фотоэлектрических ячеек, связанных друг с другом и поставленных на гибкой или жесткой подставке.

Коэффициент полезного действия конструкции вычисляется исходя из применения разных факторов. Основными являются — чистота задействованного кремния и размещение кристаллов.

Процесс очищения кремния довольно сложен, да и расположить кристаллы в единой направленности не легко. Сложность процессов, отвечающих за повышение КПД конвертируется в высокую цену за подобное оборудование.

Солнечные панели — перспективное направление в энергетике, поэтому в исследования новых проектов в этой сфере инвестируется многомиллиардные вложения. Каждый квартал коэффициент фотоэлектрического преобразования повышается, благодаря манипуляциям с проводниками и элементами конструкции. При этом, за основу может браться не только кремний.

Типы фотоэлектрических преобразователей

Солнечные панели

В промышленности существует классификация солнечных батарей по типу устройства и применяемого фотоэлектрического слоя.

По устройству делятся на:

  • панели из гибких элементов, они же гибкие;
  • панели из жестких элементов.

При развертывании панелей чаще всего используются гибкие тонкоплёночные. Они укладываются на поверхность, игнорируя некоторые неровные элементы, что делает данный тип устройства — более универсальным.

По типу фотоэлектрического слоя для последующего преобразования энергии панели делятся на:

  1. Кремниевые (монокристалл, поликристалл, аморфные).
  2. Теллурий–кадмиевые.
  3. Полимерные.
  4. Органические.
  5. Арсенида–галлиевые.
  6. Селенид индия– меди– галлиевые.

Хотя разновидностей множество, львиную долю в потребительском обороте имеют кремниевые и теллурий–кадмиевые солнечные панели. Эти два типа выбирают из–за соотношения КПД/цена.

Характеристики кремниевых солнечных батарей

Кремниевые батареи

Кварцевый порошок — это сырьевой материал для кремния. Данного материала на Урале и Сибири очень много, поэтому именно кремниевые солнечные панели есть и будут в большем обиходе, чем остальные подтипы.

Монокристалл

Монокристаллические пластины (mono–Si) содержат в себе синевато–темный цвет, равномерно размещенный на всей пластине. Для таких пластин применяется максимально очищенный кремний. Чем он чище, тем КПД солнечных батарей выше и самую наибольшую стоимость на рынке таких устройств.

Монокристаллические панели

  1. Наивысший КПД — 17–25%.
  2. Компактность — задействование сравнительно с поликристаллом меньшей площади для развертывания оснащения в условиях тождества мощности.
  3. Износостойкость — бесперебойная работа выработки электроэнергии без замены основных комплектующих обеспечивается за четверть века.
  1. Чувствительность к пыли и грязи — осевшая пыль не дает батареям работать со светом от светила и соответственно уменьшает КПД.
  2. Высокая цена равна увеличенному сроку окупаемости.

Так как mono–Si нуждаются в ясной погоде и лучах Солнца, панели устанавливаются на открытых местах и поднятые на высоту. Насчет местности, то предпочтение отдается местности, в которой ясная погода обыденность, а количество солнечных дней приближено к максимальному.

Поликристалл

Поликристаллические пластины (multi–Si) наделены неравномерным синим окрасом из–за разнонаправленности кристаллов. Кремний не настолько чист, как в используемых mono–Si, поэтому КПД несколько ниже, вместе со стоимостью таких солнечных батарей.

Поликристаллические панели

Положительные факты поликристалла:

  1. Коэффициент полезного действия 12–18%.
  2. При неблагоприятной погоде КПД лучше, чем у Mono–Si.
  3. Цена данного агрегата меньше, а сроки окупаемости намного ниже.
  4. Ориентация на солнце не принципиальна, поэтому можно размещать их на крышах различных строений.
  5. Длительность эксплуатации — эффективность поглощения энергии и аккумулирования электричества падает до 20% спустя 20 лет непрерывной эксплуатации.
  1. КПД уменьшен до 12–18%.
  2. Требовательность к месту. Для развертывания нормальной станции выработки электроэнергии нужно больше места, чем при задействовании батареи из монокристалла.

Аморфный кремний

Панели из аморфного кремния

Технология производства панелей существенно отличается от предыдущих двух. В приготовлении задействованы горячие пары, опускающиеся на подложку без образования кристаллов. При этом используется меньше производственного материала и это учитывается при формировании цены.

  1. Коэффициент полезного действия — 8–9% во втором поколении и до 12% в третьем.
  2. Высокий коэффициент полезного действия при не совсем солнечной погоде.
  3. Возможность использования на гибких модулях.
  4. Эффективность батарей не падает вниз при повышении температуры, что позволяет монтировать их на всякие поверхности с нестандартной формой.

Основным недостатком можно считать меньший КПД (если сравнивать с иными аналогами), в связи с чем требуется большая площадь для получения сопоставимой отдачи от оборудования.

Обзор модулей, не использующих кремний

Солнечные панели, изготавливаемые из более дорогих аналогов, достигают коэффициента в 30%, они могут быть в несколько раз дороже аналогичных систем на основе кремния. Некоторые из них всё же имеют более низкий КПД, при этом обладая возможностью работать в агрессивной среде. Для изготовления таких панелей применяется чаще всего теллурид кадмия. Применяются и другие элементы, но реже.

Перечислим основные преимущества:

  1. Высокий КПД, от 25 до 35%, с возможностью достигнуть, в относительно идеальных условиях даже 40%.
  2. Фотоэлементы стабильны даже при температурах до 150 °C.
  3. Концентрация света от светила на маленькой панели позволяет обеспечить водяной теплообменник энергией, в результате чего образовывается пар, который вращает турбину и генерирует электричество.

Как и говорили ранее — минусом является высокая цена, но в некоторых случаях они являются лучшим решением. Например, в экваториальных странах, где поверхность модулей может нагреться до 80 °C.

Полимерные и органические батареи

Модули, созданные на основе полимерных и органических материалов, получили своё распространение в последние 10 лет, они создаются в виде плёночных конструкций, толщина которых редко превышает 1 мм. Их КПД близок к 15%, а стоимость в несколько раз ниже кристаллических аналогов.

  1. Низкая стоимость производства.
  2. Гибкий (рулонный) формат.

Недостатком панелей из этих материалов является снижение эффективности на длительной дистанции. Но этот вопрос ещё исследуется и производство постоянно модернизируется, чтобы исключить минусы, которые могут проявиться в существующем поколении такого вида батарей через 5–10 лет.

Как сделать правильный выбор

Для владельцев домов, расположенных на Европейском континенте выбор довольно прост — это поликристалл либо монокристалл из кремния. При этом, при ограниченных площадях стоит сделать выбор в пользу монокристаллических панелей, а при отсутствии таких ограничений — в пользу поликристаллических батарей. При выборе производителя, технических параметров оборудования и дополнительных систем стоит обратиться к компаниям, которые занимаются как продажей, так и установкой комплектов. Учитывайте, что вне зависимости от производителя — качество систем у «топовых» производителей вряд ли будет отличаться, поэтому не дайте себя обмануть, изучая ценовую политику.

Монокристаллические панели

Если решили заказать установку «солнечной фермы» под ключ, учтите, что сами панели в пакете таких услуг займут всего 1/3 общей стоимости, а окупаемость вплотную приблизится к отметке «10 лет»:

  1. Бюджетным, но эффективным выбором станут панели от компании Amerisolar, поликристаллическая модель носит название AS–6P30 280W, имеет размер 1640х992 мм и выдаёт, соответственно — 280 Вт мощности. КПД модуля составляет 17.4%. Из минусов — гарантия всего 2 года. Но стоимость ∼7 тыс. рублей.
  2. Аналогичным по мощности будет модуль RS 280 POLY от китайской Runda, стоимость ещё ниже — около 6 тыс. рублей.
  3. Если место ограничено, стоит обратить внимание на продукт компании LEAPTON SOLAR — LP72–375M PERC, КПД составляет 19.1%, и при размерах 1960х992 мм получаем на выходе 375 Вт энергии. Стоимость такой батареи будет в районе 10 тыс. рублей.
  4. Ещё одним эффективным вариантом с меньшими габаритами, 1686х1016 мм будет новинка от LG — NeOn 340 W. «Не он» может похвастаться КПД в 19.8%, но не может похвастаться стоимостью, она будет более чем в половину выше предыдущего образца — примерно 16 тысяч рублей.
  5. Для тех, кто хочет обратить своё внимание на премиальный сегмент, тайваньская компания BenQ выпустила на рынок монокристальный модуль SunForte PM096B00 333W, выдающий на выходе 333 Вт мощности, имеющий номинальный КПД в 20.4% при размерах 1559х1046 мм. Этот модуль получил впечатляющую стоимость в почти 35 тысяч рублей.

SunForte

Читайте также: может ли быть использована солнечная панель для дачи, какие дополнительные устройства и материалы необходимы и как их выбрать.

Почему так важна эффективность

Большое значение эффективность приобретает при расчёте площади, которую вы можете использовать под систему солнечных батарей. При сопоставимых размерах описанных модулей от Amerisolar AS–6P30 280W (1.63 квадратных метра) и NeOn 340 W от LG (1.71 квадратных метра), разница в мощности на один квадратный метр на выходе будет составлять 15.6%. С одной стороны, это может показаться не очень эффективным, учитывая разницу в цене более чем в два раза, но в случае с ограниченным пространством или более агрессивной внешней средой, возможно, сдвинет ваш выбор в пользу этого известного производителя.

NeOn панели

Увеличенный коэффициент полезного действия подчеркивает не только эффективность технологии изготовления, но и качественные материалы, используемые при изготовлении. Это сможет сказаться на сроках работы устройств, на устойчивость панелей к так называемой деградации. Не стоит забывать также и про гарантийные обязательства производителя. Имея представительства и гарантийные сервисы почти во всех уголках мира — LG сможет похвастаться более лояльным подходом к клиентам и выполнением своих обязательств.

Где купить

Приобрести солнечные панели можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых панелей есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»:

Заключение

Если рассматриваете установку солнечной станции в качестве инвестиций, выбор моделей с меньшим КПД будет более оправданным. Если целью является использование системы в домашнем хозяйстве, по принципу «установил и забыл», мы порекомендуем обратить внимание на панели от более именитых производителей, это позволит получить большую отдачу от станции в долгосрочной (более 5 лет) перспективе.

Принципы работы солнечных батарей и как они устроены

Солнце – это неисчерпаемый источник энергии. Его можно использовать, сжигая деревья или нагревая воду в солнечных нагревателях, преобразуя полученное тепло в электроэнергию. Но есть устройства, превращающие солнечный свет в электричество напрямую. Это солнечные батареи.

Сфера применения

Есть три направления использования солнечной энергии:

  • Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
  • Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
  • Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.

Принцип работы

Элементы солнечных батарей представляют собой пластинки из кремния толщиной 0,3 мм. Со стороны, на которую попадает свет, в пластину добавлен бор. Это приводит к появлению избыточного количества свободных электронов. С обратной стороны добавлен фосфор, что приводит к образованию «дырок». Граница между ними называется p-n переход. При попадании света на пластину, он «выбивает» электроны на обратную сторону. Так появляется разность потенциалов. Вне зависимости от размера элемента, одна ячейка развивает напряжение 0,7 В. Для увеличения напряжения, их соединяют последовательно, а для повышения силы тока – параллельно.

В некоторых конструкциях, для увеличения мощности, над элементами устанавливались линзы или использовалась система зеркал. С уменьшением стоимости батарей такие устройства стали неактуальными.

Максимальный КПД панели, а, следовательно, и мощность, достигается при падении света под углом 90 градусов. В некоторых стационарных устройствах батарея поворачивается вслед за солнцем, но это сильно удорожает и утяжеляет конструкцию.

Солнечные батареи принцип работы

Принцип работы солнечной батареи к содержанию ↑

Преимущества и недостатки применения батарей

У солнечных панелей, как и у любых устройств, есть достоинства и недостатки, связанные с принципом действия и особенностями конструкции.

Достоинства солнечных батарей:

  • Автономность. Позволяют обеспечить электроэнергией удаленные здания или светильники и работу мобильных устройств в походных условиях.
  • Экономичность. Для выработки электроэнергии используется свет солнца, за который не нужно платить. Поэтому ФЭС (фотоэлектрические системы) окупаются за 10 лет, что меньше срока службы, составляющего более 30. Причем 25–30 лет – это гарантийный срок, а фотоэлектростанция будет работать и после него, принося прибыль владельцу. Конечно, необходимо учесть периодическую замену инверторов и аккумуляторных батарей, но все равно, использование такой электростанции помогает экономить средства.
  • Экологичность. При работе устройства не загрязняют окружающую среду и не шумят, в отличие от электростанций, работающих на других видах топлива.

Кроме достоинств, у ФЭС есть недостатки:

  • Высокая цена. Такая система стоит довольно дорого, особенно с учетом цены на аккумуляторные батареи и инверторы.
  • Большой срок окупаемости. Средства, вложенные в фотоэлектростанцию, окупятся только через 10 лет. Это больше, чем основная масса других вложений.
  • Фотоэлектрические системы занимают много места – всю крышу и стены здания. Это нарушает дизайн сооружения. Кроме того, аккумуляторные батареи большой емкости занимают целую комнату.
  • Неравномерность выработки электроэнергии. Мощность устройства зависит от погоды и времени суток. Это компенсируется установкой аккумуляторных батарей или подключением системы к сети. Это позволяет в хорошую погоду днем продавать излишки электроэнергии электрокомпании, а ночью наоборот подключать оборудование к централизованному электроснабжению.

По ссылке вы можете узнать дополнительную информацию о том, что такое солнечные батареи.

Технические характеристики: на что обратить внимание

Главным параметром фотоэлементной системы является мощность. Напряжение такой установки достигает максимума при ярком свете и зависит от количества соединенных последовательно элементов, которое почти во всех конструкциях равно 36. Мощность зависит от площади одного элемента и количества цепочек по 36 штук, соединенных параллельно.

Кроме самих батарей, важно подобрать контроллер зарядки аккумуляторов и инвертор, преобразующий заряд аккумуляторных батарей в напряжение сети, а также сами панели.

В аккумуляторных батареях есть допустимый ток зарядки, который нельзя превышать, иначе система выйдет из строя. Зная напряжение аккумуляторов, легко определить мощность, необходимую для зарядки. Она должна быть больше мощности солнечной электростанции, иначе в солнечный день часть энергии окажется неиспользованной.

Читайте также:  Пластиковые подоконники в дом

Контроллер обеспечивает заряд аккумуляторов и также должен иметь мощность, позволяющую полностью использовать энергию солнца.

К инвертору подключается оборудование, получающее энергию от ФЭС, поэтому его мощность должна соответствовать суммарной мощности электроприборов.

Кроме мощности и напряжения, важно выбрать фирму-производителя. Такое оборудование приобретается на срок несколько десятков лет, поэтому экономить на качестве нельзя. Производители, давно работающие на рынке, это понимают и дорожат своей репутацией. Можно почитать отзывы о них в интернете и выбрать с самыми положительными.

Виды солнечных батарей

Кроме размера и мощности, панели отличаются способом, которым изготавливаются из кремния отдельные элементы.

Солнечные батареи виды

Внешний вид моно- и поликристаллических панелей

Элементы из монокристаллического кремния

Элементы солнечных батарей, изготовленные из монокристаллического кремния, имеют форму квадрата с закругленными углами. Это связано с технологией изготовления:

  • из расплавленного кремния высокой степени очистки выращивается кристалл цилиндрической формы;
  • после остывания у цилиндра обрезаются края, и основание из круга принимает форму квадрата с закругленными углами;
  • получившийся брусок разрезается на пластины толщиной 0,3 мм;
  • в пластины добавляются бор и фосфор и на них наклеиваются контактные полоски;
  • из готовых элементов собирается ячейка батареи.

Готовая ячейка закрепляется на основании и закрывается стеклом, пропускающим ультрафиолетовые лучи или ламинируется.

Такие устройства отличаются самым высоким КПД и надежностью, поэтому устанавливаются в важных местах, например, в космических аппаратах.

Фотоэлементы из мульти-поликристаллического кремния

Кроме элементов из цельного кристалла, есть устройства, в которых фотоэлементы изготавливаются из поликристаллического кремния. Технология производства похожа. Основное отличие в том, что вместо кристалла круглой формы используется прямоугольный брусок, состоящий из большого количества мелких кристаллов различных форм и размеров. Поэтому элементы получаются прямоугольной или квадратной формы.

В качестве сырья берутся отходы производства микросхем и фотоэлементов. Это удешевляет готовое изделие, но ухудшает его качество. Такие устройства имеют меньший КПД – в среднем 18% против 20–22% у монокристаллических батарей. Однако вопрос выбора достаточно сложный. У разных производителей цена одного киловатт мощности монокристаллических и поликристаллических панелей может быть одинаковой или в пользу любого вида устройств.

Фотоэлементы из аморфного кремния

В последние годы распространение получили гибкие батареи, которые легче жестких. Технология их изготовления отличается от технологии изготовления моно- и поликристаллических панелей – на гибкую основу, обычно стальной лист, напыляются тонкие слои кремния с добавками до достижения необходимой толщины. После этого листы разрезаются, к ним приклеиваются токопроводящие полоски и вся конструкция ламинируется.

Солнечные батареи аморфные

Солнечные батареи из аморфного кремния

КПД таких батарей примерно в 2 раза меньше, чем у жестких конструкций, однако, они легче и более прочные за счет того, что их можно сгибать.

Такие приборы дороже обычных, но им нет альтернативы в походных условиях, когда основное значение имеет легкость и надежность. Панели можно нашить на палатку или рюкзак, и заряжать аккумуляторы во время движения. В сложенном виде такие устройства похожи на книгу или свернутый в рулон чертеж, который можно поместить в футляр, напоминающий тубус.

Кроме зарядки мобильных устройств в походе, гибкие панели устанавливаются в электромобилях и электросамолетах. На крыше такие приборы повторяют изгибы черепицы, а если в качестве основы использовать стекло, то оно приобретает вид тонированного и его можно вставить в окно дома или теплицу.

Контроллер заряда для солнечных батарей

У прямого подключения панели к аккумулятору есть недостатки:

  • Аккумулятор с номинальным напряжением 12 В будет заряжаться только при достижении напряжения на выходе фотоэлементов 14,4 В, что близко к максимальному. Это значит, что часть времени батареи заряжаться не будут.
  • Максимальное напряжение фотоэлементов – 18 В. При таком напряжении ток заряда аккумуляторов будет слишком большим, и они быстро выйдут из строя.

Для того чтобы избежать этих проблем необходима установка контроллера заряда. Самыми распространенными конструкциями являются ШИМ и МРРТ.

ШИМ-контроллер заряда

Работа ШИМ-контроллера (широтно-импульсная модуляция – англ. pulse-width modulation – PWM) поддерживает постоянное напряжение на выходе. Это обеспечивает максимальную степень заряда аккумулятора и его защиту от перегрева при зарядке.

МРРТ-контроллер заряда

МРРТ-контроллер (Maximum power point tracker – слежение за точкой максимальной мощности) обеспечивает такое значение выходного напряжения и тока, которое позволяет максимально использовать потенциал солнечной батареи вне зависимости от яркости солнечного света. При пониженной яркости света он поднимает выходное напряжение до уровня, необходимого для зарядки аккумуляторов.

Такая система есть во всех современных инверторах и контроллерах зарядки

Виды аккумуляторов, используемых в батареях

Аккумулятор для солнечных батарей

Различные виды аккумуляторов, которые можно использовать для солнечной батареи

Аккумуляторы – важный элемент системы круглосуточного электроснабжения дома солнечной энергией.

В таких устройствах используются следующие виды аккумуляторов:

  • стартерные;
  • гелевые;
  • AGM батареи;
  • заливные (OPZS) и герметичные (OPZV) аккумуляторы.

Аккумуляторы других типов, например, щелочные или литиевые дорогие и используются очень редко.

Все эти виды устройств должны работать при температуре от +15 до +30 градусов.

Стартерные аккумуляторы

Самый распространенный тип аккумуляторов. Они дешевы, но обладают большим током саморазряда. Поэтому через несколько пасмурных дней батареи разрядятся даже при отсутствии нагрузки.

Недостатком таких устройств является то, что при работе происходит газовыделение. Поэтому их необходимо устанавливать в нежилом, хорошо проветриваемом помещении.

Кроме того, срок службы таких аккумуляторов до 1,5 лет, особенно при многократных циклах заряд-разряд. Поэтому в долгосрочной перспективе эти устройства окажутся самыми дорогими.

Гелевые аккумуляторы

Гелевые аккумуляторы –изделия, не требующие обслуживания. При работе отсутствует газовыделение, поэтому их можно устанавливать в жилой комнате и помещении без вентиляции.

Такие устройства обеспечивают большой выходной ток, имеют высокую емкость и низкий ток саморазряда.

Недостаток таких приборов в высокой цене и небольшом сроке службы.

AGM батареи

Эти батареи имеют небольшой срок службы, однако, у них есть много преимуществ:

  • отсутствие газовыделения при работе;
  • небольшими размерами;
  • большим количеством (около 600) циклов заряда-разряда;
  • быстрым (до 8 часов) зарядом;
  • хорошей работой при неполном заряде.

Заливные (OPZS) и герметичные (OPZV) аккумуляторы

Такие устройства являются самыми надежными и имеют наибольший срок службы. Они обладают низким током саморазряда и высокой энергоемкостью.

Эти качества делают такие приборы наиболее популярными для установки в фотоэлементных системах.

Как определить размер и количество фотоэлементов?

Необходимые размер и количество фотоэлементов зависит от напряжения, силы тока и мощности, которые нужно получить от батареи. Напряжение одного элемента в солнечный день равно 0,5 В. При облачности оно намного ниже. Поэтому для зарядки аккумуляторов 12 В, соединяются последовательно 36 фотоэлементов. Соответственно, для аккумуляторов 24 В необходимо 72 элемента и так далее. Общее их количество зависит от площади одного элемента и необходимой мощности.

Один квадратный метр площади батареи, с учетом КПД, может выдать приблизительно 150 Вт. Точнее можно определить по метеорологическим справочникам, показывающим количество солнечной радиации в месте установки гелиооэлектростанции или в интернете. КПД устройства указан в паспорте.

При изготовлении фотоэлектростации своими руками необходимое количество элементов определяется по мощности одного элемента в данном климате с учетом КПД.

Много солнечных батарей для большого здания

Расчет количества солнечных батарей исходит из необходимого электричества к содержанию ↑

Эффективность солнечных батарей зимой

Несмотря на то что зимой солнце поднимается ниже, поток света уменьшается незначительно, особенно после выпадения снега.

Основных причин, по которым солнечные элементы зимой менее эффективны три:

  • Меняется угол падения лучей. Для того чтобы сохранять мощность, угол наклона батареи необходимо менять хотя бы раз в сезон, а лучше каждый месяц.
  • Снег, особенно влажный, налипает на поверхность устройства. Его необходимо убирать сразу после выпадения.
  • Зимой меньше продолжительность светлого времени суток, а также больше пасмурных дней. Изменить это невозможно, поэтому приходится рассчитывать мощность батареи по зимнему минимуму.

Правила установки

Максимальная мощность панели достигается в положении, при котором солнечные лучи падают перпендикулярно. Это необходимо учитывать при установке. Важно также учесть, в какое время суток минимальная облачность. Если угол наклона крыши и ее положение не соответствуют требованиям, то оно исправляется регулировкой основания.

Между батареей и крышей должен быть воздушный зазор 15–20 сантиметров. Это необходимо для протекания дождя и предохранения от перегрева.

Фотоэлементы плохо работают в тени, поэтому следует избегать располагать их в тени от зданий и деревьев.

Электростанции из солнечных фотоэлементов – это перспективный экологически чистый источник энергии. Их широкое применение позволит решить проблемы с нехваткой энергии, загрязнением окружающей среды и парниковым эффектом.

Устройство и принцип работы солнечной батареи: схема и комплектующие, история создания

Уже почти два века человечество напряжённо думает, где и как достать необходимое количество электрической энергии для своих многочисленных изобретений и возрастающих потребностей.

За это время появились могучие электростанции, масштабные ГЭС, сила расщеплённого атома и мощь бурных рек пришла на помощь человечеству.

Особенно стремительно развиваются в различных регионах Земли в последние десятилетия такие альтернативные источники энергии, как ветровые станции и солнечные батареи.

Учитывая, что угасание Солнца ожидается лишь через 4-5 млрд. лет, такой источник энергии, как солнечные батареи можно считать неисчерпаемым. Поговорим о нём. Что это такое, откуда взялось и как устроено.

Изобретение

Древний инсолятор

Первым, кто смог экспериментально обнаружить взаимодействие между светом и электрической энергией, был знаменитый немецкий физик Генрих Герц. Также известно, что явление, аналогичное открытому позднее фотоэффекту наблюдал и исследовал в 1839 г. Эдмон Беккерель.

Он сумел выяснить, что ультрафиолет значительно способствует возникновению и прохождению разряда между двумя проводниками электрической энергии. Однако, проведя ряд экспериментов, Герц не стал больше развивать эту тему.

Первую в мире, работоспособную схему по выработке и передаче электрической энергии с применением лучей света произвёл русский учёный из Москвы Александр Столетов. Он создал прообраз первого в мире фотоэлемента.

Француз Огюст Мушо в конце позапрошлого столетия сумел создать систему, при которой сфокусированные и преобразованные солнечные лучи приводили в движение печатную машину.

Развитие исследований по преобразованию солнечной энергии в электрическую в 20 веке ознаменовалось работой А. Эйнштейна по открытию фотоэффекта (явление отрывания заряженных частиц от поверхности некоторого вещества, находящегося под действием другого вещества или света).

Это привело к появлению первых фотоэлементов на основе селена (Se – 34), а затем и таллия (Tl – 81). В 1930 гг. учёными-физиками Академии наук СССР был создан медно-таллиевый (Cu-Tl) фотоэлемент с наибольшим для тех времён КПД в 1%.

Появившиеся позднее фотоэлементы на основе Кремния (Si-14) имели в 6 раз больший КПД. В 1953 г. была разработана первая в мире солнечная батарея. Спустя всего 5 лет учёные СССР установили первые солнечные батареи на искусственный спутник Земли №3.

Спутник с СБ

В 1970-х гг. прошлого века учёные выяснили, что полупроводники лучше многих металлов образуют электрический ток из света. С тех пор появилось множество новых видов и материалов для производства солнечных батарей.

Именно открытие фотоэффекта, произведённое А. Эйнштейном, и привело к возникновению и развитию индустрии солнечных батарей.

Как устроена

Схема получения энергии СБ

Итак, солнечная батарея – система взаимосвязанных элементов, структура которых позволяет, используя принцип фотоэффекта, преобразовывать попадающий на них под определённым углом солнечный свет в электрический ток.

Система, преобразующая солнечный свет в электрическую энергию состоит из следующих комплектующих элементов:

    Материал-полупроводник (плотно совмещённые два слоя материалов с разной проводимостью). Это может быть, например, монокристаллический или поликристаллический кремний с добавлением других химических соединений, позволяющих получить нужные для возникновения фотоэффекта свойства.

Схематическое изображение СБ

Фотоны света (солнечный свет), попадающие на поверхность полупроводника при столкновении с его поверхностью передают свою энергию электронам полупроводника. Выбитые вследствие удара из полупроводника электроны преодолевают защитный слой, имея дополнительную энергию.

Таким образом, отрицательные электроны покидают p-проводник, переходя в проводник n, положительные – наоборот. Такому переходу способствуют существующие в проводниках на тот момент электрические поля, которые в последствие увеличивают силу и разность зарядов (до 0.5 В в небольшом проводнике).

Намереваясь приобрести солнечную батарею или изготовить её, тщательно просчитайте:

  • стоимость такой батареи и необходимого оборудования;
  • необходимое вам количество электрической энергии;
  • количество необходимых вам батарей;
  • число солнечных дней в году в вашем регионе;
  • необходимую вам площадь для установки солнечных батарей.

Сила тока

Сила электрического тока в солнечном элементе зависит от таких факторов, как:

  • количество света, попавшего на поверхность элемента;
  • интенсивность излучения источника света;
  • площадь принимающего фотоны элемента;
  • угол падения света на принимающий элемент;
  • время эксплуатации элемента;
  • КПД системы (в настоящее время у самых передовых аналогов он составляет не более 24%. О КПД солнечных батарей Вы можете прочитать в этой статье.);
  • температура окружающего воздуха (чем выше она, тем больше у элемента сопротивление).

Элементы для улучшения работы

Солнечный трекер

Для организации более эффективной работы фотоэлементов в конструкции солнечной батареи используют диод Шоттки.

Он представляет собой диод полупроводникового типа, который имеет меньше по сравнению с другими конструкциями падение напряжения при включении напрямую.

Он работает на основе использования перехода p-n типа в среде “металл-проводник”. Сравнение с кремниевыми диодами показывает, что прямое напряжение снижается в среднем с 0,65 В до 0,35 В, что способствует росту КПД системы.

Для более эффективного попадания солнечного света на поверхность батареи разработано и используется специальное устройство – солнечный трекер. Данное устройство предназначено для слежения за движением Солнца и поворота солнечной панели (батареи) таким образом, чтобы на её поверхность попадало как можно больше солнечных лучей (оптимизация угла падения лучей).

Для более рационального соединения двух и более панелей солнечных батарей и получения нужного сопротивления в такой системе используются специальные сертифицированные коннекторы, например МС4 Т (male+female).

Преимущества и недостатки

Положительными чертами данного вида выработки энергии являются:

  • экологичность (не загрязняет окружающую среду);
  • долговечность (при бережном использовании фотоэлементы прослужат несколько десятков лет);
  • достаточно простой принцип работы.

Минусами системы являются:

  • сложность сборки самой системы и наладки её работы;
  • низкий КПД (требуется очень большая площадь солнечных батарей для обеспечения нужд даже небольшой семьи. Для 3-4 чел, потребляющих 200 Кв в месяц, нужно 12-15 кв. метров батарей);
  • достаточно высокая стоимость и низкая окупаемость системы.

Использование солнечной энергии в мире

Немецкий комплекс СБ

Многие государства всерьёз задумались о масштабном производстве и использовании солнечной энергии.

Лидерами по производству энергии с помощью солнечных батарей являются США, Япония и Германия.

Производство солнечной энергии получает своё развитие и в России.

В настоящее время в РФ уже построено следующее количество установок по производству солнечной энергии:

  • Краснодарский край – 46 ед.;
  • Дагестан – 8 ед.;
  • Ставропольский край – 2 ед.;
  • Бурятия, Хабаровский край, Костромская область – по 1 ед.

Бурное развитие данной отрасли во всем мире оставляет надежду на то, что в будущем этот неисчерпаемый источник экологичной энергии станет основным для населения планеты.

Смотрите видео, в котором подробно рассказывается об устройстве и производстве солнечных панелей:

Ссылка на основную публикацию