Нагрузка на кирпичную стену – расчет прочности и устойчивости самонесущей

Практическое занятие № 1 – Сейсмостойкость самонесущих кирпичных стен

Курс «Конструкции сейсмостойких зданий и сооружений» знакомит студентов с такими грозными, внезапными, разрушительными явлениями природы, как землетрясения.

Приступая к выполнению практических работ студенты должны ознакомится с основами динамики зданий и сооружений

В процессе выполнения практических работ студенты оценивают сейсмичность строительной площадки, определяют сейсмическую нагрузку на строительную конструкцию и оценивают ее сейсмостойкость, предусматривают антисейсмические мероприятия.

Перед выполнением практических работ необходимо ознакомится с объемом и содержанием каждой задачи, подобрать рекомендуемую литературу.

Нормативные ссылки

СП 20.13330.2011 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*. – 96 с.

СП 14.13330.2010 Строительство в сейсмических районах СНиП II-7-81* Актуализированная редакция. – 131 с.

ТСН 22-302-200* Краснодарского края (CНКК 22-301-2000*) Строительство в сейсмических районах Краснодарского края.

ГОСТ 8.417-2002 ГСИ Единицы физических величин

ГОСТ 2.105-79 Построение и оформление таблиц

ГОСТ 2.106-96 ЕСКД Текстовые документы

Тематика практических занятий

1 Сейсмостойкость самонесущих кирпичных стен

2 Одноэтажные каркасные промздания из сборного железобетона

3 Одноэтажные каркасные здания из металлоконструкций

4 Железобетонная эстакада под емкости с водой

5 Водонапорная башня из монолитного железобетона

6 Открытый стальной навес

Исходные данные для выполнения практических задач выдаются преподавателем индивидуально на практическом занятии. Задания выполняются в тетради в письменном виде.

Практическое занятие № 1 – Сейсмостойкость самонесущих кирпичных стен

Расчет самонесущей кирпичной стены в плоскости и из плоскости

1.1 Расчет самонесущей кирпичной стены в плоскости

Исходные данные: Здание трехэтажное кирпичное. Фасадная стена толщиной 510 мм содержит: оконные проемы b х h = 2,0х1,5 м; простенки шириной 1 м, высота этажа 3 м (рисунок 7).

Расчетная сейсмичность 8 баллов, категория грунта II. Марка кирпича М 100 на растворе марки М 50.

Рисунок 1 – Схема фасада самонесущей кирпичной стены: 1-горизонтальные пояса; 2-простенки; 3- глухой участок

1 Определение горизонтальных сейсмических нагрузок

Стены с оконными проемами при определении сейсмических нагрузок, действующих в плоскости стены, разбиваются по высоте на ярусы с границами на уровне горизонтальных осей проемов (рисунок 7) и определяется вес каждого яруса

Q1= Q2 = ( 22 . 0,51 . 3,3 – 2 . 1,5 . 0,51 . 7) . 18 . 1,1 . 0,9 = 469 кН

Q3 = ( 22 . 1,05 . 0,51 – 2 . 0,75 . 0,51 . 7) . 18 . 1,1 . 0,9 = 114,6 кН

Определение горизонтальных сейсмических нагрузок производится по формулам (1) и (2)

S1 = K1 . Q1 . А . β . Кψ . η = 0,35 . 469 . 0,2 . 1,2= 39,4 кН

S2 = K1 . Q2 . А . β . Кψ . η = 0,35 . 469 . 0,2 . 2,3 = 75,5 кН

S3 = K1 . Q3 . А . β . Кψ . η = 0,35 . 114,6 . 0,2 . 3,5 = 28,1 кН

где β . Кψ . η принимается по таблице 1, К1 = 0,35 по таблице 3 [1],

А=0,2 – коэффициент, значения которого принимают согласно п. 2.5 [1] .

При h/b =1,5≤ 1,5 сейсмическая нагрузка между отдельными простенками и глухими участками стены распределяется по формуле

где А n = 1х0,51= 0,51 м 2

S11 = 39,4 . 0,143 = 5,6 кН, S22 = 75,5 х 0,143 = 10,8 кН,

S33 = 28,1 х 0,143 = 4,02 кН

Рисунок 2 – Схемы к расчету простенков и горизонтальных поясов самонесущей кирпичной стены на действие сейсмических сил в ее плоскости: а-элемент фасада стены; б-расчетная схема; в- эпюра М

1-оси проемов; 2-простенки; 3-оси горизонтальных поясов

Вертикальная нагрузка от собственного веса кирпичной стены и вертикальной сейсмической нагрузки, которая принимается равной 15 % от собственного веса стены при сейсмичности 8 баллов определяется по формуле Nн = ( N c + N а п.) . 1,15 при действии сейсмической нагрузки вниз и по формуле N b = ( N c + Nа. п ) . 0,85 при действии сейсмической нагрузки вверх, где: N с – расчетный вес кирпичной кладки стены; Nа.п – расчетный вес антисейсмического железобетонного пояса.

Nн = ( 0,51 . 6,15 . 18 + 25 . 0,6 . 0,51) . 1,1 . 0,9 . 1,15 = 72,9 кН

Nb = ( 0, 51 . 6,15 . 18 + 25 . 0,6 . 0,51) . 1,1 . 0,9 . 0,85 = 53,9 кН

Расчет стены на прочность

а ) Расчет на внецентренное сжатие

1 Вертикальная сейсмическая нагрузка направлена вниз:

Мн.с = 18,75 кНм ; N = 72,9 кН; eо = М / N = 18,75/ 79,2 = 0,26 м

Продольное армирование кирпичной кладки не требуется п. 4.10 [3]

Проверка прочности внецентренно сжатых неармированных элементов каменных конструкций производят по формуле

где Ас = А (1- 2eо/h ) = 0,51 . 1 . ( 1 – 2 . 0,26/1 ) = 0,265 м 2

При h > 30 см коэффициент m дл = 1 φ1= (φ + φс)/2 = ( 0,96 + 1)/2 = 0,98

Гибкость элемента λ = ℓо / h с = 3/0,52 = 5,8 = 6 φ = 0,96, где

h с = ( h – 2 . e о ) = ( 1- 2 . 0,24) = 0,52

При знакопеременной эпюре изгибающего момента по высоте элемента коэффициент продольного изгиба φ с следует определять по высоте части элемента в пределах однозначной эпюры изгибающего момента при отношениях или гибкостях λ = Н1 / h с1 = 1,5/ 0,52 = 2,5, φ с = 1, где Н1– высота части элемента с однозначной эпюрой изгибающего момента, h с1 – высота сжатой части элемента в сечении с максимальным изгибающим моментом

ω = 1 + eо / h = 1 + 0,24/1 = 1,24 ≤ 1,45

m д . φ1 . R . Ас . ω = 1 . 0,98 . 15 . 2650 . 1,24 = 483 кН > 72,9 кН

Прочность обеспечивается с запасом. Можно принять марку кирпича 75 и раствор марки 25.

2 Вертикальная сейсмическая нагрузка направлена вверх

N b = 54 кН, М = 18,75 кН м, eо = М/N = 18,75/ 54 = 0,32 м

Площадь сжатой части сечения при прямоугольной эпюре напряжений

Ас = А . ( 1 – 2 . eо/ h ) = 0, 51 . 1 . (1 – 2 . 0,35/ 1) = 0,184 м 2

коэффициент m д = 1, φ1 = ( φ + φс)/2 = 1 ( см. предыдущий расчет); ω = 1 + eо/ h = 1 + 0,32/1 = 1,32 < 1,45

m д . φ1 . R . Ас . ω . m к.р = 1 . 1 . 15 . 1840 . 1,32 = 364 кН > 53,9 кН

3 Проверка прочности горизонтального кирпичного пояса

Мр = 12,5 кНм, W = b . h /6 = 0,51 . 1,8 2 / 6 = 0,275 м 3

М сеч = Rt. b . W . m кр = 0,25 . 0,275 . 0,8 = 0,055 МНм = 55 кНм>

где R tb – расчетное сопротивление растяжению при изгибе по перевязанному сечению, принимается по таблице 11 [3] R tb = 0,25 МПа при марке раствора 50 и выше

Прочность кирпичной кладки обеспечена

4 Расчет междуоконного простенка из плоскости

К междуоконным простенкам по осям 2 , 3, 4 примыкают кирпичные стены, поэтому расчет из плоскости простенков в этих осях на местную сейсмическую нагрузку не производим в виде повышенной их прочности.

Определяем усилия в простенке от действия местной сейсмической нагрузки ( вертикальную нагрузку от собственного веса простенка вследствие малости не учитываем).

Величину местной сейсмической нагрузки определяем по формулам и (2) [1]

Согласно указаниям п. 5.9 [2] принимаем β . η . Кψ = 2

Q = 0,51 . 1 . 18 . 1,1 . 0,9 = 9,08 кН /м

S k = К1 . Q к . А . β . К ψ . η = 0,35 . 9,1 . 0,2 . 2 = 1,27 кН/м

Изгибающий момент в опорных сечениях

Моп = Sk . ℓ 2 / 12 = 1,27 . 3 2. /12 = 0,952 кНм

Мпр = 0,5 . 0,952 = 0,476 кНм – пролетный момент

W = b . h 2 /6 = 1 . 0,51 2 / 6 = 0,043 м 2

Rtb . W . m к.р = 0,12 . 0,043 . 0,8 = 0,0041 МНм = 4,1кНм > 0, 476 кНм

Расчетное сечение на опоре W = b . h 2 / 6 = 3 . 0,51 2 / 6 = 0,13 м 3

Rtb . W . m кр = 0,12 . 0,13 . 0,8 = 0, 0125 кНм = 12,5 кНм > 0,952 кНм

где Rtb = 0, 12 МПа – расчетное сопротивление растяжению при изгибе по неперевязанному сечению

Как рассчитать стены из кладки на устойчивость

Чтобы выполнить расчет стены на устойчивость, нужно в первую очередь разобраться с их классификацией (см. СНиП II -22-81 «Каменные и армокаменные конструкции», а также пособие к СНиП) и понять, какие бывают виды стен:

1. Несущие стены – это стены, на которые опираются плиты перекрытия, конструкции крыши и т.п. Толщина этих стен должна быть не менее 250 мм (для кирпичной кладки). Это самые ответственные стены в доме. Их нужно рассчитывать на прочность и устойчивость.

2. Самонесущие стены – это стены, на которые ничто не опирается, но на них действует нагрузка от всех вышележащих этажей. По сути, в трехэтажном доме, например, такая стена будет высотой в три этажа; нагрузка на нее только от собственного веса кладки значительная, но при этом очень важен еще вопрос устойчивости такой стены – чем стена выше, тем больше риск ее деформаций.

3. Ненесущие стены – это наружные стены, которые опираются на перекрытие (или на другие конструктивные элементы) и нагрузка на них приходится с высоты этажа только от собственного веса стены. Высота ненесущих стен должна быть не более 6 метров, иначе они переходят в категорию самонесущих.

4. Перегородки – это внутренние стены высотой менее 6 метров, воспринимающие только нагрузку от собственного веса.

Разберемся с вопросом устойчивоcти стен.

Первый вопрос, возникающий у «непосвященного» человека: ну куда может деться стена? Найдем ответ с помощью аналогии. Возьмем книгу в твердом переплете и поставим ее на ребро. Чем больше формат книги, тем меньше будет ее устойчивость; с другой стороны, чем книга будет толще, тем лучше она будет стоять на ребре. Со стенами та же ситуация. Устойчивость стены зависит от высоты и толщины.

Теперь возьмем наихудший вариант: тонкую тетрадь большого формата и поставим на ребро – она не просто потеряет устойчивость, но еще и изогнется. Так и стена, если не будут соблюдены условия по соотношению толщины и высоты, начнет выгибаться из плоскости, а со временем – трещать и разрушаться.

Что нужно, чтобы избежать такого явления? Нужно изучить п.п. 6.16. 6.20 СНиП II -22-81.

Рассмотрим вопросы определения устойчивости стен на примерах.

Пример 1. Дана перегородка из газобетона марки М25 на растворе марки М4 высотой 3,5 м, толщиной 200 мм, шириной 6 м, не связанная с перекрытием. В перегородке дверной проем 1х2,1 м. Необходимо определить устойчивость перегородки.

Из таблицы 26 (п. 2) определяем группу кладки – III . Из таблиц ы 28 находим ? = 14. Т.к. перегородка не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 9,8.

Находим коэффициенты k из таблиц ы 29:

k 1 = 1,8 – для перегородки, не несущей нагрузки при ее толщине 10 см, и k 1 = 1,2 – для перегородки толщиной 25 см. По интерполяции находим для нашей перегородки толщиной 20 см k 1 = 1,4;

k3 = 0,9 – для перегородки с проемами;

Окончательно β = 1,26*9,8 = 12.3.

Найдем отношение высоты перегородки к толщине: H / h = 3,5/0,2 = 17,5 > 12.3 – условие не выполняется, перегородку такой толщины при заданной геометрии делать нельзя.

Каким способом можно решить эту проблему? Попробуем увеличить марку раствора до М10, тогда группа кладки станет II , соответственно β = 17, а с учетом коэффициентов β = 1,26*17*70% = 15 < 17,5 - этого оказалось недостаточно. Увеличим марку газобетона до М50, тогда группа кладки станет I , соответственно β = 20, а с учетом коэффициентов β = 1,26*20*70% = 17.6 >17,5 – условие выполняется. Также можно было не увеличивая марку газобетона, заложить в перегородке конструктивное армирование согласно п. 6.19. Тогда β увеличивается на 20% и устойчивость стены обеспечена.

Пример 2. Дана наружная ненесущая стена из облегченной кладки из кирпича марки М50 на растворе марки М25. Высота стены 3 м, толщина 0,38 м, длина стены 6 м. Стена с двумя окнами размером 1,2х1,2 м. Необходимо определить устойчивость стены.

Из таблицы 26 (п. 7) определяем группу кладки – I . Из таблиц ы 28 находим β = 22. Т.к. стена не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 15,4.

Находим коэффициенты k из таблиц ы 29:

k 1 = 1,2 – для стены, не несущей нагрузки при ее толщине 38 см;

k2 = √А n / Ab = √1,37/2,28 = 0,78 – для стены с проемами, где Ab = 0,38*6 = 2,28 м 2 – площадь горизонтального сечения стены с учетом окон, А n = 0,38*(6-1,2*2) = 1,37 м 2 ;

Окончательно β = 0,94*15,4 = 14,5.

Найдем отношение высоты перегородки к толщине: H / h = 3/0,38 = 7,89 < 14,5 - условие выполняется.

Необходимо также проверить условие, изложенное в п. 6.19:

Еще полезные статьи:

профили арматуру не заменят

насчет фундамента: допустимы пустоты в теле бетона, но не снизу, чтобы не уменьшать площадь опирания, которая отвечает за несущую способность. То есть снизу должен быть тонкий слой армированного бетона.
А какой фундамент – лента или плита? Какие грунты?

жаль, вообще просто пишут что в легких бетонах (керамзитобетон) плохая связь с арматурой – как с этим бороться? я так понимаю чем прочнее бетон и чем больше площадь поверхности арматуры – тем лучше будет связь, т.е. надо керамзитобетон с добавлением песка (а не только керамзит и цемент) и арматуру тонкую, но чаще

насчет фундамента: допустимы пустоты в теле бетона, но не снизу, чтобы не уменьшать площадь опирания, которая отвечает за несущую способность. То есть снизу должен быть тонкий слой армированного бетона.
А какой фундамент – лента или плита? Какие грунты?

Груны пока не известны, вероятнее всего будет чистое поле суглинки всякие, изначально думал плиту, но низковато выйдет, хочется по-выше, а ещё же придётся верхний плодородный слой снимать, поэтому склоняюсь к ребристому или даже коробчатому фундаменту. Несущей способности грунта много мне не надо – дом всё-таки решили в 1 этаж, да и керамзитобетон не очень тяжёлый, промерзание там не более 20 см (хотя по старым советским нормативам 80).

Думаю снять верхний слой 20-30 см, выложить геотекстиль, засыпать песочком речным и разровнять с уплотнением. Затем легкая подготовительна я стяжка – для выравнивая (в неё вроде бы даже арматуру не делают, хотя не уверен), поверх гидроизоляция праймером
а дальше вот уже диллема – даже если связать каркасы арматуры ширина 150-200мм х 400-600мм высоты и уложить их с шагом в метр, то надо ещё пустоты чем-то сформировать между этими каркасами и в идеале эти пустоты должны оказаться поверх арматуры (да ещё и с некоторым расстоянием от подготовки, но при этом сверху их тоже надо будет проармировать тонким слоем под 60-100мм стяжку) – думаю ППС плиты замонолитить в качестве пустот – теоретически можно будет такое залить в 1 заход с вибрированием.

Читайте также:  Розетка штепсельная: технические характеристики с заземляющим контактом, монтаж 2-х полюсной розетки открытой установки или утопленного типа с защитным контактом

Т.е. как бы с виду плита 400-600мм с мощным армированием каждые 1000-1200мм объемная структура единая и легким в остальных местах, при этом внутри примерно 50-70% объёма будет пенопласт (в не нагруженных местах) – т.е. по расходу бетона и арматуры – вполне сравнимо с плитой 200мм, но + куча относительно дешового пенопласта и работы больше.

Если как-то бы ещё заменить пенопласт на простой грунт/песок – будет ещё лучше, но тогда вместо легкой подготовки разумнее делать нечто более серьёзное с армированием и выносом арматуры в балки – в общем тут не хватает мне и теории и практического опыта.

Вернёмся пока к стенам, тут вычитал ещё интересный вариант tilt-up
на фундаменте отливается прямо стена с утелпением сразу (в утеплении есть углубления для армирования, т.е. слой бетона не везде одинаковый, как бы та же ребристая структура)

я думаю заменить тяжёлый бетон 50-150 мм, на керамзитобетон заводской 150-250 мм 1000-1200кг/м3 – арматурный каркас там из 12й арматуры в прорези между утеплителем (шаг 1м в утолщениях стены), а по внутренней стене дополнительно кладочную сетку 6ку вроде с шагом 100мм

потом это ставится уже краном (свариваются, скручиаются выносы арматуры) а стыки и углы монолитятся и утепляются отдельно (в стыках из плиты и потом в перекрытие отдельно арматура закладывается)

немного смущает слабая связь стен с фундаментом (только по стыкам и углам), но при монолитном перекрытии – это вроде как достаточно жестко, можно в фундаменте и стеновых плитах сделать закладные и сварить до кучи

Как Вам такая технология? Несущая стена получится 150мм с утолщениями до 250мм из керазитобетона M50 с умеренным армированием

жаль, вообще просто пишут что в легких бетонах (керамзитобетон) плохая связь с арматурой – как с этим бороться? я так понимаю чем прочнее бетон и чем больше площадь поверхности арматуры – тем лучше будет связь, т.е. надо керамзитобетон с добавлением песка (а не только керамзит и цемент) и арматуру тонкую, но чаще

зачем с этим бороться? нужно просто учитывать в расчете и при конструировании. Понимаете, керамзитобетон – достаточно хороший стеновой материал со своим списком достоинств и недостатков. Как и любые другие материалы. Вот если бы вы захотели использовать его для монолитного перекрытия, я бы вас отговаривала, потому что
Цитата:

а значит будут проблемы в растянутой зоне плиты и в местах анкеровки арматуры.

Для стен же, тем более для одноэтажного дома, керамзитобетон вполне подходит. Конечно, нужно соблюсти все нормативные требования для лёгких бетонов.

стяжка не армируется

почитал СНИП по легким бетонам, там довольно интересные есть моменты.
1. похоже можно делать керамзитобетон без мелкого наполнителя, я думаю использовать 10-20
2. есть разные сорта керамзита по прочности, и требования для каждой марки керамзитобетона

Класс бетона по прочности на сжатие – Минимальная марка заполнителя по прочности

При этом я вижу что для фракции 10-20 есть варианты керамзита как П25 (дешового 250кг/м3), так и П50 – более дорогой и у него насыпная плотность уже 400кг/м3

т.е. в принципе можно получить относительно дорогой конструкционно- теплоизоляционн ый D600 – D700 M100-B7.5 из которого даже относительно тонким слоем при качественном армировании можно хоть в 3-4 этажа лепить

а можно получить дешовый D500 M50-B3.5 на 1-2 этажа хватит и такого за глаза, даже если будет пирог 120мм-100 ППС-80мм с армированием по 1 слою в обоих слоях керамбитобетона , связанных стеклоплатсиков ой арматурой между собой (как только это посчитать – не понятно, одиночной стены в 120мм мало, но учитывая что пенопласт будет не сплошным слоем, а с шагом в метр будут рёбра из чистого керамзитобетона с армированием, т.е. рёбра в 300мм толщиной по сути)
я думаю прочности тут с большим запасом (скидка на качество изготовления самомесом, но планирую вибрировать поверхностным вибратором, плиты будут отливаться на фундаменте горизонтально с выносом арматуры для связи плит, и через неделю подниматься – размер плиты 1.1-1.2 х 2.4-3 м вес примерно 300-400кг всего, стыки плит будут заливаться отдельно тем же керамзитобетоном)

Ещё есть мысль закупить б/у труб d50 и в плите в слое 120мм их замуровать с шагом 600мм с выносом, чтобы потом за них поднимать было удобно тельфером на полтонны думаю справиться, но и под них сделать дырки в фундаменте и поставить трубами в дырки + потом сверху будет перекрытие с армпоясом одновременно на всю 120мм часть стеновой плиты – эти трубы там замонолитить.

Расчет наружной кирпичной стены толщиной 250 мм на прочность и устойчивость

расчет наружной кирпичной стены

Данный расчет представляет собой проверку несущей наружной стены дома по проекту SDT-172-2K.G.

1. Исходные данные

Регион строительства: г. Москва

Длина стены (L): 8,03 м.

Высота стены (H): 3,01 м.

Толщина стены (t): 0,25 м.

Кирпич для кладки: полнотелый керамический кирпич размером 250х120х65 мм марки М150.

Раствор для кладки: цементно-песчаный раствор марки М50.

Армирование кладки: не предусмотрено (в проекте арматурная сетка заложена, но в расчете это учитываться не будет).

Требуется рассчитать стену 1 этажа в осях 1/А-Б на прочность.

план 1 этажа

Рис. 1. План 1 -го этажа

план 2 этажа

Рис. 2. План 2-го этажа

разрез 1-1

2. Сбор нагрузок

сбор нагрузок на наружную кирпичную стену

Рис. 4. Таблица сбора нагрузок с перекрытий и крыши

3. Расчет

Расчет производится на 1 погонный метр стены согласно разделу 7 СП 15.13330.2012 «Каменные и армокаменные конструкции».

3.1. Расчет наружной несущей стены на прочность

Расчет стены на прочность производим для самой нагруженной наружной стены. В нашем случае это стена в осях 1/А-Б.

расчетные сечения

Рис. 5. Расчетная схема

Определение полной нагрузки, которая действует на 1 пог.м кладки под перекрытием 1 этажа:

N = G + Pкр + P1 + P2 = 1,60 т + 0,77 т + 2,28 т + 0,40 т = 5,05 т,

G = 2,97 м * 1 м * 0,25 м * 1,8 т / м 3 * 1,1 + 0,2 м * 0,25 м * 1 м * 2,5 т/м 3 * 1,1 = 1,47 т + + 0,13 т = 1,60 т – вес кладки выше перекрытия 1 этажа;

Pкр = 0,24 т/м 2 * 3,2 м * 1 м = 0,77 т – полная расчетная нагрузка от крыши;

P1 = 1,00 т/м 2 * 2,275 м * 1 м = 2,28 т – полная расчетная нагрузка от перекрытия 1 этажа.

P2 = 0,175 т/м 2 * 2,275 м * 1 м = 0,40 т – полная расчетная нагрузка от перекрытия 2 этажа.

Определение места приложения нагрузки от перекрытия 1 этажа:

e1 = 120 мм / 3 = 40 мм

В проекте плита перекрытия 1-го этажа опирается на всю толщину стены. Для данного расчета же возьмем более худший вариант – предположим, что плита опирается на 120 мм, т. е. величина, а = 120 мм.

В связи с этим продольная сила P1 от перекрытия будет действовать на расстоянии 40 мм (120*1/3 – центр тяжести эпюры напряжений в виде треугольника).

Определение места приложения нагрузки от вышележащих этажей:

е2 = 250 мм / 2 = 125 мм

Нагрузка от вышележащих этажей G приложена по центру стены.

Определение эксцентриситета расчетной силы N относительно центра тяжести сечения:

e = e2 – e1 = 125 мм – 40 мм = 85 мм = 8,5 см.

3.1.1. Расчет по сечению 1-1

Данный расчет осуществляется для глухих стен, где расчетное сечение находится на уровне низа перекрытия 1-го этажа. В этом сечение действует продольная сила N и максимальный изгибающий момент М.

Определение изгибающего момента:

M = P1 * e = 2,30 т * 8,5 см = 19,38 т*см

Определение эксцентриситета продольной силы N:

e00 = М / N = 19,38 т*см / 5,05 т = 3,84 см

Определение общего эксцентриситета:

ev – величина случайного эксцентриситета равная 2 см, принятая согласно п. 7.9, так как толщина стены 250 мм.

Проверка необходимости в расчете по раскрытию трещин в швах кладки согласно п. 7.8:

y = t / 2 = 250 мм / 2 = 125 мм = 12,5 см.

Расчет по раскрытию трещин в швах кладки не требуется.

Определение прочности кладки внецентренно сжатого элемента:

N ≤ mg * φ1 * R * Ac * ω = 1 * 0,79 * 0,018 т/см 2 * 1332 см 2 * 1,242 = 23,52 т.

формула 1

φ = 1 – коэффициент продольного изгиба для всего сечения в плоскости действия изгибающего момента, принятый согласно п. 7.4.

φс = 0,58 – коэффициент продольного изгиба для сжатой части сечения, определяемый по фактической высоте элемента Н по таблице 19 в плоскости действия изгибающего момента при отношении:

tc = t – 2e = 25 см – 2 * 5,84 см = 13,32 см.

Для определения φс также требуется знать упругую характеристику α, которая в свою очередь находится по таблице 17 в зависимости от вида кладки и марки раствора. В нашем случае α = 1000.

mg = 1 – коэффициент, учитывающий влияние длительной нагрузки, принятый согласно п. 7.4.

R = 1,8 Мпа = 18 кг/см 2 = 0,018 т/см 2 – расчетное сопротивление кладки сжатию, определяемое по таблице 2 в зависимости от марки кирпича М150 и марки раствора М50.

Ac = 1332 см 2 – площадь сжатой части сечения, определяемая по формуле:

формула 3

A = 2500 см 2 – площадь поперечного сечения, которая в нашем случае считается на 1 п.м., определяемая по формуле:

А = L * t = 100 см * 25 см = 2500 см 2

ω = 1,234 – коэффициент, определяемый по формулам, приведенным в таблице 20. В нашем случае данный коэффициент определяется по формуле:

формула 4

Вывод: прочность наружной стены толщиной 250 мм из керамического кирпича марки М150 на цементно-песчаном растворе марки М50 в расчетном сечении I-I обеспечена без дополнительного армирования сетками.

3.1.2 Расчет по сечению 2-2

Данный расчет выполняется в месте, где действует момент 2/3М. Бывают случаи, когда именно это сечение оказывается критичным из-за минимальных коэффициентов mg и φ.

Определение продольной силы с учетом кладки:

N = G + Gкл + Pкр + P1 + P2= 1,60 т + 0,5 т + 0,77 т + 2,28 т + 0,40 т = 5,55 т,

Так как сечение 2-2 находится на расстоянии Н/3 от перекрытия 1-го этажа, то нам необходимо к общей нагрузке прибавить еще вес кладки между сечениями 1-1 и 2-2. Определяем его по следующей формуле:

формула 5

ρ = 1,8 т/м 3 – плотность кладки;

L1 = 1 м – длина 1 погонного метра стены;

γf = 1,1 – коэффициент надежности по нагрузке.

Pкр = 0,24 т/м 2 * 3,2 м * 1 м = 0,77 т – полная расчетная нагрузка от крыши;

P1 = 1,00 т/м 2 * 2,275 м * 1 м = 2,28 т – полная расчетная нагрузка от перекрытия 1 этажа.

P2 = 0,175 т/м 2 * 2,275 м * 1 м = 0,40 т – полная расчетная нагрузка от перекрытия 2 этажа.

Определение изгибающего момента:

формула 6

Определение эксцентриситета продольной силы N:

e00 = М / N = 12,92 т*см / 5,55 т = 2,33 см

Определение общего эксцентриситета с учетом случайного:

Проверка необходимости в расчете по раскрытию трещин в швах кладки согласно п. 7.8:

Расчет по раскрытию трещин в швах кладки не требуется.

Определение прочности кладки внецентренно сжатого элемента на расстоянии 2/3Н:

N ≤ mg1 * R *Ac * ω = 0,956 * 0,875 * 0,018 т/см 2 * 1634 см 2 * 1,173 = 28,86 т.

формула 7

φ = 0,92 – определяется по таблице 19 в зависимости от гибкости элемента:

l = 2,01 м = 201 см – расчетная высота (длина) элемента, определяемая согласно указаниям 7.3. В нашем случае l = 2H/3.

Коэффициент α = 1000 (не меняется, так как кладка та же).

φс = 0,83 – определяется по таблице 19 в зависимости от гибкости сжатой части сечения:

формула 9

tc = t – 2e = 25 см – 2 * 4,33 см = 16,34 см.

mg – коэффициент, определяемый по формуле:

формула 10

Ng = G + Gкл + Pкр,g + P1,g + P2,g = 1,60 т + 0,5 т + 0,1 т + 1,84 т + 0,20 т = 4,24 т – расчетная продольная сила от длительных и постоянных нагрузок.

Pкр,g = 0,03 т/м 2 * 3,2 м * 1 м = 0,1 т – расчетная нагрузка от крыши (длительные + постоянные);

P1,g = 0,81 т/м 2 * 2,275 м * 1 м = 1,84 т – полная расчетная нагрузка от перекрытия 1 этажа (длительные + постоянные);

P2,g = 0,084 т/м 2 * 2,275 м * 1 м = 0,20 т – полная расчетная нагрузка от перекрытия 2 этажа (длительные + постоянные).

η = 0,046 – коэффициент, принимаемый по таблице 21;

e0g = 5,05 см – эксцентриситет от продольной силы (длительные + постоянные нагрузки), который в сечении 2-2 равен:

e0g = М / Ng = 12,92 т*см / 4,24 т = 3,05 см

при этом полный эксцентриситет с учетом случайного будет равен:

e0g = e0g + evg = 3,05 см + 2 см = 5,05 см

Ac = 1634 см 2 – площадь сжатой части сечения, определяемая по формуле:

формула 11

ω = 1,173 – коэффициент, определяемый по формулам, приведенным в таблице 20. В нашем случае данный коэффициент определяется по формуле:

формула 12

Вывод: прочность наружной стены толщиной 250 мм из керамического кирпича марки М150 на цементно-песчаном растворе марки М50 в расчетном сечении II-II обеспечена без дополнительного армирования сетками.

3.2. Расчет наружной несущей стены на устойчивость

Расчет кирпичной стены толщиной 250 мм на устойчивость производим для стены в осях 3/А-Б. Расчет производим по разделу 9 СП 15.13330.2016 «Каменные и армокаменные конструкции».

Читайте также:  Раковина со столешницей длиной 100 см для кухни: ассиметричная, видео-инструкция по установке своими руками, как врезать, фото и цена

Согласно п. 9.17 должно выполняться условие:

По таблице 27 определяем группу кладки из кирпича марки М150 и раствора марки М50. В данном случае группа кладки – I.

Находим значение отношения H/t:

По таблице 29 определяем значение β. Для данного вида кладки β = 25.

Так как условия отличаются от указанных в п. 9.17, значение β принимаем с учетом поправочного коэффициента k, который приведен в таблице 30.

В свою очередь данный коэффициент является произведением, назовём их, подкоэффициенты, зависящие от характеристик стены. В нашем случае это следующие коэффициенты:

1. Стена с проемами

формула 15

Ab = 803 см * 25 см = 20075 см 2 – площадь брутто определяются по горизонтальному сечению стены;

An = 20075 см2 – (160 см + 120 см) * 25 см = 13075 см 2 – площадь нетто.

Стены и перегородки при свободной их длине между примыкающими поперечными стенами или колоннами от 2,5 до 3,5 H

Определяем общий коэффициент k:

Проверка дополнительных требований:

Коэффициент k должен быть не ниже коэффициента kp, указанного в таблице 31 (для столбов).

Для стены толщиной 25 см и кладки из камней правильной формы kp = 0,6, что меньше 0,726. Значит, окончательно принимаем k = 0,726.

Определение значения β с учетом поправочного коэффициента:

β = 25 * 0,726 = 18,15

Проверка основного условия:

18,15 ≥ 12,04 – условие выполняется.

Вывод: устойчивость наружной стены толщиной 250 мм обеспечена.

Заключение

Наружные стены дома по проекту SDT-172-2K.G удовлетворяют требованиям по прочности и устойчивости.

Методы расчета электрических нагрузок: формулы, коэффициенты, таблицы данных

Этот вопрос очень актуален для всех людей, которые строят собственный кирпичный дом и только постигают азы строительства. На первый взгляд кирпичная стена весьма простая конструкция, она имеет высоту, ширину и толщину. Интересующая нас грузность стены зависит в первую очередь от ее конечной общей площади. То есть, чем шире и выше стена, тем толще она должна быть.

Но, причем здесь толщина стены из кирпича? – спросите вы. При том, что в строительстве, многое завязано на прочности материала. У кирпича, как и у других строительных материалов, есть свой ГОСТ, который учитывает его прочность. Также грузность кладки зависит от ее устойчивости. Чем уже и выше будет несущая поверхность, тем толще она обязана быть, особенно это касается основания.

Еще один параметр, который влияет на общую грузность поверхности, это теплопроводность материала. У обыкновенного полнотелого блока теплопроводность довольно высокая. Это значит, что он, сам по себе, плохая теплоизоляция. Поэтому чтобы выйти на стандартизированные показатели теплопроводности, строя дом исключительно из силикатных или любых других блоков, стены должны быть очень толстыми.

Но, в целях экономии средств и сохранения здравого смысла, люди отказались от идей строить дома напоминающие бункер. Чтобы иметь прочные несущие поверхности и при этом хорошую теплоизоляцию, стали применять многослойную схему. Где одним слоем выступает силикатная кладка, достаточной грузности, чтобы выдерживать все нагрузки, которым она подвержена, второй слой – это утепляющий материал, а третий – облицовка, которой так же может выступать кирпич.

Основные понятия

Любое металлическое изделие состоит из кристаллической решетки. Через нее проходят электроны, подвижные частицы, из-за чего электричество трансформируется в тепловую энергию. Данное свойство с успехом используется производителями обогревателей и осветительных приборов. Однако в обычных электрических системах перегрев кабеля недопустим, поскольку он со временем приведет к нарушению изоляцию и воспламенению. Поэтому важно подобрать правильное сечение проводников, чтобы те выдерживали допустимые (потенциальные) токовые нагрузки сети.

Для этого учитываются два термина:

  • сечение провода;
  • плотность тока.

Зависимость плотности тока от сечения
Даже если будет подобрано правильное сечение провода, он все равно может перегреться. Причин несколько: слабый контакт в местах соединения или окисления, связанные с недопустимой скруткой алюминиевой и медной жил.

Сечение провода

Для выбора сечения токоведущей жилы (проводника, а не всего кабеля с оболочкой и изоляцией) ориентируются по двум параметрам:

  • нагрев в допустимых пределах;
  • потеря напряжения.

Опасным является перегрев подземного кабеля, помещенного в пластиковые трубки рукава. В воздушных линиях электропередач уделяется внимание потери напряжения. Для комбинированных отрезков с двумя разными сечениями следует выбрать большее, округлив его до стандартного значения. Перед расчетом сечения или поиском подходящих табличных величин следует определить, какими будут условия эксплуатации.

Неверный выбор сечения кабеля может привести к перегреву и возгоранию
Для расчета потенциального нагрева нужно учитывать длительно допустимую температуру. Величина напрямую зависит от возможной силы тока Iп. После использования формулы вы получите расчетный ток Iр, который должен отличаться от Iп и быть меньше его значения (ни в коем случае не больше!). При выборе сечения используют следующую формулу:

  • Pн — номинальная мощность, Вт;
  • Uн — номинальное напряжение, В.

Пользоваться данной формулой можно для расчета токов в проводниках с уже устоявшейся температурой при условии, что на кабель не влияют другие охлаждающие или согревающие факторы. Величина длительно допустимого тока Iп зависит от разных параметров: сечение, материал изготовления, изоляционная оболочка и способ монтажа.

Чтобы проверить падение напряжения на воздушной линии электропередач, пользуются следующей формулой:

  • Uп = (U — Uн) *100/ Uн,
  • U — напряжения от источника;
  • Uн — напряжение в месте, где подключается приемник напряжения.

Максимально допустимое отклонение напряжения — 10%.

Плотность тока

Данная физическая величина является векторной. Для ее обозначения используют латинскую букву J. Формула расчета выглядит следующим образом:

  • I — сила тока, А;
  • S — площадь поперечного сечения, кв. мм.

Предельная плотность тока для алюминиевых и медных проводов
Плотностью тока называют объем тока, который проходит через проводник заданного сечения за определенный отрезок времени. Измеряется в А/кв. мм.

Выбор кирпича

В зависимости от того, какой должна быть толщина несущей стены из кирпича, нужно выбирать определенный вид материала, имеющий разные размеры и даже структуру. Так, по структуре их можно разделить на полнотелые и дырчатые. Полнотелые материалы имеют большую прочность, стоимость, и теплопроводность.

Стройматериал с полостями внутри в виде сквозных отверстий не так прочен, имеет меньшую стоимость, но при этом способность к теплоизоляции у дырчатого блока выше. Это достигается за счет наличия в нем воздушных карманов.

Размеры любых видов рассматриваемого материала также могут разниться. Он может быть:

  • Одинарным;
  • Полуторным;
  • Двойным;
  • Половинчатым.

Одинарный блок, это стройматериал, стандартных размеров, такой к которому мы все привыкли. Его размеры таковы: 250Х120Х65 мм.

Полуторный или утолщенный – имеет большую грузность, и его размеры выглядят так: 250Х120Х88 мм. Двойной – соответственно, имеет сечение двух одинарных блоков 250Х120Х138 мм.

Половинчатый – это малыш среди своих собратьев, он имеет, как вы, вероятно, уже догадались, половину толщины одинарного – 250Х120 Х12 мм.

Как видно, единственные отличия в размерах этого стройматериала в его толщине, а длина и ширина одинаковые.

В зависимости от того, какой будет толщина стены из кирпича, экономически целесообразн, выбирать более крупные при возведении массивных поверхностей, например, такими часто бывают несущие поверхности и более мелкие блоки, для перегородок.

Толщина стены

Мы уже рассмотрели параметры, от которых зависит толщина наружных стен из кирпича. Как мы помним, это устойчивость, прочность, теплоизоляционные свойства. Кроме этого, разные виды поверхностей, должны иметь совершенно разную размерность.

Несущие поверхности это, по сути, опора всего здания, они берут на себя основную нагрузку, от всей конструкции, включая вес крыши, на них же влияют внешние факторы, такие как ветра, осадки, кроме того на них давит их собственный вес. Поэтому их грузность, по сравнению с поверхностями ненесущего характера и внутренними перегородками, должна быть наиболее высокой.

В современных реалиях большинству двух и трехэтажных домов, достаточно 25 см толщины или одного блока, реже в полтора или 38 см. Прочности у такой кладки будет достаточно для здания таких размеров, но как быть с устойчивостью. Здесь все гораздо сложнее.

Для того чтобы рассчитать будет ли устойчивость достаточной нужно обратиться к нормам СНиП II-22-8. Давайте рассчитаем, будет ли устойчив наш кирпичный дом, со стенами толщиной в 250 мм, длинною в 5 метров и высотой в 2.5 метра. Для кладки будем использовать материал М50, на растворе М25, расчет проведем для одной несущей поверхности, без окон. Итак, приступим.

По данным из таблицы выше, нам известно, что характеристика нашей кладки относится к первой группе, а также для нее справедливо описание из пункта 7. Табл. 26. После этого, смотрим в таблицу 28 и находим значение β, которое означает допустимое соотношение грузности стены к ее высоте, учитывая, вид используемого раствора. Для нашего примера это значение равно 22.

Далее, нам нужно найти коэффициент k из таблицы 29.

  • k1 для сечения нашей кладки равно 1.2 (k1=1.2).
  • k2=√Аn/Аb где:

Аn – площадь сечения несущей поверхности по горизонтали, расчет прост 0.25*5=1.25 кв. м

Ab – площадь сечения стены по горизонтали учитывая оконные проемы у нас таковые отсутствуют, поэтому k2 = 1.25

  • Значение k4 задано, и для высоты 2.5 м равно 0.9.

Теперь узнав, все переменные можно найти общий коэффициент «k», путем перемножения всех значений. K=1.2*1.25*0.9=1.35 Далее узнаем совокупное значение поправочных коэффициентов и фактически узнаем насколько устойчива рассматриваемая поверхность 1.35*22=29.7, а допустимое соотношение высоты и толщины равно 2.5:0.25=10, что значительно меньше, полученного показателя 29.7. Это означает, что кладка толщиной в 25 см шириной 5 м и высотой в 2.5 метра обладает устойчивость почти в три раза выше, чем это необходимо по нормам СНиП.

Хорошо с несущими поверхностями разобрались, а что с перегородками и с теми что не несут на себе нагрузку. Перегородки, целесообразно делать в половину толщины – 12 см. Для поверхностей, которые не несут на себе нагрузки, так же справедлива формула устойчивости, которую мы рассмотрели выше. Но так как сверху, такая стена будет не закреплена, показатель коэффициента β нужно уменьшить на треть, и продолжить расчеты с уже другим значением.

Расчет мощности

Самый простой способ – это рассчитать суммарную мощность, которую будет потреблять дом или квартира. Этот расчет будет использован для подбора сечения провода от столба ЛЭП до вводного автомата в коттедж или от подъездного щита в квартиру на первую распределительную коробку. Точно так же рассчитываются провода по шлейфам или комнатам. Понятно, что входной кабель будет иметь самое большое сечение. И чем дальше от первой распределительной коробки, тем данный показатель будет уменьшаться.

Но вернемся к расчетам. Итак, в первую очередь необходимо определить суммарную мощность потребителей. У каждого из них (бытовые приборы и лампы освещения) на корпусе этот показатель обозначен. Если не нашли, смотрите в паспорте или в инструкции.

Мощность потребления некоторых электроприборов

После чего все мощности необходимо сложить. Это и есть суммарная мощность дома или квартиры. Точно такой же расчет необходимо сделать и по контурам. Но тут есть один спорный момент. Некоторые специалисты рекомендуют умножить суммарный показатель на понижающий коэффициент 0,8, придерживаясь того правила, что не все приборы будут одновременно включаться в цепь. Другие же, наоборот, предлагают умножить на повышающий коэффициент 1,2, тем самым создавая некий запас на будущее, ввиду того, что есть большая вероятность появления в доме или квартире дополнительных бытовых приборов. По нашему мнению второй вариант – оптимальный.

Выбор кабеля

Теперь, зная суммарный показатель мощности, можно выбрать и сечение проводки. В ПУЭ установлены таблицы, по которым легко сделать этот выбор. Приведем несколько примеров для электрической линии, находящейся под напряжением 220 вольт.

  • Если суммарная мощность составила 4 кВт, то сечение провода будет 1,5 мм².
  • Мощность 6 кВт, сечение 2,5 мм².
  • Мощность 10 кВт – сечение 6 мм².

Кладка в полкирпича, кирпич, полтора, два кирпича

В заключение давайте рассмотрим, как проводится кладка кирпича в зависимости от грузности поверхности. Кладка в полкирпича, самая простая из всех, так как нет необходимости делать сложные перевязки рядов. Достаточно, положить первый ряд материала, на идеально ровное основание и следить за тем, чтобы раствор равномерно ложился, и не превышал 10 мм в толщину.

Главным критерием качественной кладки сечением в 25 см, является осуществление качественной перевязки вертикальных швов, которые не должны совпадать. Для этого варианта кладки важно от начала до конца соблюдать выбранную систему, которых есть как минимум две, однорядная и многорядная. Отличаются они, способом перевязки и кладки блоков.

Кладка размером в полтора кирпича строится по такой системе: в первом ряду, блоки кладутся перпендикулярно друг другу, таким образом, чтобы с внешней стороны находилась тычковая часть, а с внутренней стороны – ложковая. Следующий ряд кладется, так же, но уже снаружи находится ложковая часть, а внутри тычковая.

Система кладки толщиной в два кирпича, схожа с кладкой в один кирпич, различие в том что горизонтальное сечение поверхности увеличится с 250 до 500 – 520 мм если учитывать размер швов.

Общепринятые нормы

В наше время разновидностей кирпича много. Для каждого вида своя нагрузка. Например, наряду с полнотелым кирпичом сегодня применяют дырчатый, который еще называют эффективным. Он лучше сохраняет тепло и считается самым популярным при малоэтажном строительстве.

Читайте также:  Пол в курятнике: из чего и как лучше сделать, чтобы не промерзал

Создавая стены, необходимо понимать, какая толщина будет наиболее приемлема. Делая облицовку, достаточно выложить стену в один кирпич. Для несущей кирпичной стены и расчета ее толщины важно знать, до какого уровня опускаются отрицательные температуры, и какой требуется режим отопления помещений.

Удобно пользоваться общепринятыми расчетами, которые давно применяются в строительной практике. Для создания стен часто используют сплошную кладку на холодном растворе. Такую стену с внутренней стороны, как правило, штукатурят. Если температура в среднем не опускается ниже -10 градусов, достаточная толщина — 380 мм. При более низких температурах (от -20 до -30) толщина кирпичной стены должна быть не менее 640 мм. При -40 градусах лучше сделать стену шириной 770 мм.

Когда для строительства используется эффективный или многодырчатый кирпич, стены можно делать тоньше. Например, если температура опускается от — 40 до — 48 градусов, будет достаточно ширины в 640 мм.

Для создания внутренних стен кирпич используется любой. Однако и здесь нужно учитывать нагрузку. Если она повышенная, специалисты не рекомендуют использовать марку кирпича М75.

Расчет нагрузки на кирпичную стену – пример определения несущей способности конструкции

Проектирование и возведение сооружений из кирпича требует дополнительного расчета нагрузки. Несущая способность кирпичной кладки при неправильной закладке приводит к разрушению стены. Поэтому инженеры с максимальной точностью рассчитывают показатели. Для этого нужно знать марку кирпича по плотности, осуществляемую нагрузку, устойчивость, сопротивление сжатию и теплопередаче.

Виды нагрузок на кирпичную стену

Нагруженность элементов конструкции подразделяют на 2 вида:

К постоянным относят удельную массу перегородок, перестенок, стен и других элементов, а также постоянное влияние подземных вод, горных пород и их гидростатика. Временные, как становится ясно из названия, это сбор нагрузок характерного типа, которые могут изменяться. К ним относят:

  • вес временно привезенного оборудования либо стационарных объектов;
  • разность перепадов давления в проложенных трубах здания;
  • нагрузки климатического характера влияния окружающей среды (снег, дождь, ветер).

Если сооружение проектируется с малым количеством этажей, то строители могут пренебрегать данными касательно временных напряжений на здание, однако только при условии создания повышенного запаса прочности на этапах его строительства.

От чего зависит нагруженность кирпичной кладки?

Для проведения расчета первым делом необходимо определить все факторы, влияющие на прочность участка проектирования, а именно:

  • защитные возвышения по периметру кровли;
  • подоконники;
  • простенки;
  • участки над окнами с учетом полного веса всех составляющих стены;
  • допустимые нагрузки на плиту и между перекрытиями;
  • удельную массу настила;
  • для зимнего периода также учитывают вес снежного покрытия на крыше и влияние сильных порывов ветра.

Для зданий более 2-х этажей проводят расчет для определения способности их сопротивляемости. С помощью формул высчитывают нагрузки от каждого отдельного этажа конструкции и точки давления. Высокие нагрузки образовываются в нижних частях кирпичного столба. Если условия по правильному соотношению величин толщины и высоты не будут выполнены, то с увеличением срока эксплуатации стена начнет выгибаться и может полностью разрушиться от перенапряжения.

В строительной индустрии предусматривается толщина кладки из кирпича для несущих стен от 1,5 до 2,5 изделия. Но окончательное вычисление зависит от высотности объекта. Определяется устойчивость к нагрузкам непосредственно с помощью расчета, но в случае строительства 3 и более этажных зданий нужен тщательный анализ по формулам, которые учитывают сложение нагрузок от каждого этажа, угол приложения силы и возможные дополнительные напряжения.

При планировании конструкции несущего типа материал стоит укладывать не менее, чем в 1,5 камня. Вернуться к оглавлению

Пример расчета нагруженности кирпичной стены

Чтобы разобраться в вопросе нагрузок несущих конструкций, можно изучить пример выполнения проекта, в котором не учитываются временные эксплуатационные нагрузки. Например, здание 4-х этажей с толщиной стен 64 см (Т), удельный вес с учетом всех элементов — кирпича, штукатурки и раствора составляет М=18 кН/м3. По ГОСТу 11214—86, выполнена закладка окон, их размеры по ширине 100—150 см (Ш) по высоте 100—130 см (В).

Приложение веса на простенок от элементов, находящихся выше, согласно замерам, равен 0,64*1,42 м, а высота одного этажа (Вэт) 4200 мм. При этом сила давления на участок происходит под углом 45°. При слое штукатурки в 2 см определяют нагрузку от стен следующим алгоритмом: Нстен=(4Вэт+0,5(Вэт-В1)3—4Ш1*В1)(h+0,02)М. Подставив значения, получают 0, 447 МН. Определение требуемой нагруженной площади П=Вэт*В½-Ш/2. В этом случае значение равно 6 м. Нп =(30+3*215)*6 = 4,072МН. Получаемая нагрузка на кладку из кирпича от перекрытий 2-го этажа равняется: Н2=215*6 = 1,290МН, в том числе Н2l=(1,26+215*3)*6= 3,878МН. Удельный вес кирпичного простенка высчитывается по формуле: Нпр=(0,02+0,64)*(1,42+0,08)*3*1,1*18= 0,0588 МН.

Необходимый показатель для данной конструкции можно вычислить, используя некоторые данные и формулы.

Расчет несущей способности кирпичной стены выполняется по максимально загруженным простенкам нижнего этажа.

При обследовании элемента выбирают части стены с минимальной шириной и толщиной. Чаще всего они расположенными в проемах дверей или окон. Если условие У >= Н на устойчивость стены при расчетах подтверждается, то проект выполнен верно и прочность конструктивных элементов достаточна. Расчет простенка для каждого этажа и суммирование значений показывают общую нагрузку здания и выполняются согласно СНиП II-22—81.

Недостаточное сопротивление стены из кирпича

Если при определении расчетного сопротивления данные устойчивости менее ее нагрузки, следует выполнять армирование стенок и перегородок. При упрочнении материала прирост показателей прочности составляет 40%. Далее следует заново пересчитать показатели устойчивости, учитывая усиление стальными элементами. Зная что У = 1,5, а Н = 1,113, рассчитывается коэффициент усиления, поделив значения, К = 1,348. Таким образом, увеличить прочностные показатели нужно на 34,8%. Проводя армирование железной обоймой, можно достичь нужных показателей прочности, если правильно выбрать марку кирпича, усиление, определить конструкцию фундамента и характеристики грунта под фундаментом.

Расчет кирпичной кладки на устойчивость

raschet-kirpichnoj-steny-na-ustojchivost

В случае самостоятельного проектирования кирпичного дома возникает острая необходимость рассчитать, сможет ли выдержать кирпичная кладка те нагрузки, которые заложены в проекте. Особенно серьёзная ситуация складывается на участках кладки, ослабленных оконными и дверными проёмами. В случае большой нагрузки эти участки могут не выдержать и подвергнуться разрушению.

Точный расчет устойчивости простенка к сжатию вышележащими этажами достаточно сложен и определяется формулами, заложенными в нормативном документе СНиП-2-22-81 (далее ссылка – ). В инженерных расчетах прочности стены к сжатию учитывается множество факторов, включая конфигурацию стены, сопротивление сжатию, прочность данного типа материалов и многое другое. Однако приблизительно, «на глазок», можно прикинуть резистентность стены к сжатию, воспользовавшись ориентировочными таблицами, в которых прочность (в тоннах) увязана в зависимость от ширины стенки, а также марок кирпича и раствора. Таблица составлена для показателя высоты стены 2,8 м.

Таблица прочность кирпичной стенки, тонн (пример)

МаркиШирина участка, см
кирпичраствор255177100116168194220246272298
502547111417313641455055
10050613192529526068768492

В случае, если значение ширины простенка находится в интервале между указанными, необходимо ориентироваться на минимальное число. Вместе с тем, следует помнить, что в таблицах учтены не все факторы, которые могут корректировать устойчивость, прочность конструкции и сопротивление кирпичной стенки к сжатию в достаточно широком диапазоне.

Виды нагрузки

По времени нагрузки бывают временные и постоянные.

Постоянные:

  • вес элементов сооружений (вес ограждений, несущих и других конструкций);
  • давление грунтов и горных пород;
  • гидростатическое давление.

Временные:

  • вес временных сооружений;
  • нагрузки от стационарных систем и оборудования;
  • давление в трубопроводах;
  • нагрузки от складируемых изделий и материалов;
  • климатические нагрузки (снеговые, гололёдные, ветровые и т.д.);
  • и многие другие.

При анализе нагруженности конструкций обязательно следует учитывать суммарные эффекты. Ниже приведён пример подсчёта основных нагрузок на простенки первого этажа здания.

Нагруженность кирпичной кладки

Для учёта воздействующей на проектируемый участок стены силы нужно суммировать нагрузки:

raschet-kirpichnoj-steny-na-ustojchivost_1

  • от парапета;
  • подоконных участков;
  • простеночных участков;
  • надоконных участков, с учётом веса кирпичной стенки, строительного раствора и нанесённой штукатурки;
  • нагрузку от покрытия и межэтажных перекрытий;
  • вес кровли;
  • а также временные нагрузки (снеговую, ветровую и т.д.).

В случае малоэтажного строительства задача сильно упрощается, и многими факторами временной нагрузки можно пренебречь, задавая определённый запас прочности на этапе проектирования.

Однако в случае строительства 3 и более этажных сооружений необходим тщательный анализ по специальным формулам, учитывающим сложение нагрузок от каждого этажа, угол приложения силы и многое другое. В отдельных случаях прочность простенка достигается армированием.

Пример расчёта нагрузок

Данный пример показывает анализ действующих нагрузок на простенки 1-го этажа. Здесь учтены только постоянно действующие нагрузка от различных конструкционных элементов здания, с учётом неравномерности веса конструкции и углом приложения сил.

Исходные данные для анализа:

  • количество этажей – 4 этажа;
  • толщина стены из кирпичей Т=64см (0,64 м);
  • удельный вес кладки (кирпич, раствор, штукатурка) М=18 кН/м3 (показатель взят из справочных данных, табл. 19 );
  • ширина оконных проемов составляет: Ш1=1,5 м;
  • высота оконных проемов — В1=3 м;
  • сечение простенка 0,64*1,42 м (нагружаемая площадь, куда приложен вес вышележащих конструктивных элементов);
  • высота этажа Вэт=4,2 м (4200 мм):
  • давление распределено под углом 45 градусов.
  1. Пример определения нагрузки от стены (слой штукатурки 2 см)

Нст=([4Вэт+0,5(Вэт-В1)]3-4Ш1В1)(h+0,02)Мyf = ([4,2*4+0,5*(4,2-3)]*3-4*3*1,5)* (0,02+0,64) *1,1 *18=0, 447МН.

  1. Нагрузка от кровли и трёх перекрытий

Ширина нагруженной площади П=Вэт*В1/2-Ш/2=3*4,2/2,0-0,64/2,0=6 м

Нп =(30+3*215)*6 = 4,072МН

в том числе длительная нагрузка на проектируемый участок

  1. Нагрузка от перекрытий 2-го этажа

в том числе Н2l=(1,26+215*3)*6= 3,878МН

Нпр=(0,02+0,64)*(1,42+0,08)*3*1,1*18= 0,0588 МН

Общая нагрузка будет результатом сочетания указанных нагрузок на простенки здания, для её подсчета выполняется суммирование нагрузок от стенки, от перекрытий 2второго этажа и веса проектируемого участка).

Схема анализа нагрузки и прочности конструкции

Для подсчета простенка кирпичной стенки потребуются:

  • протяжённость этажа (она же высота участка) (Вэт);
  • число этажей (Чэт);
  • толщина стены (Т);
  • ширина кирпичной стены (Ш);
  • параметры кладки (тип кирпича, марка кирпича, марка раствора);
  • нагрузка (Н)
  1. Площадь простенка (П)
  1. По таблице 15 необходимо определить коэффициент а (характеристика упругости). Коэффициент зависит от типа, марки кирпича и раствора.
  2. Показатель гибкости (Г)
  1. В зависимости от показателей а и Г, по таблице 18 нужно посмотреть коэффициент изгиба ф.
  2. Нахождение высоты сжатой части

где е0 – показатель экстренсиситета.

  1. Нахождение площади сжатой части сечения
  1. Определение гибкости сжатой части простенка
  1. Определение по табл. 18 коэффициент фсж, исходя из Гсж и коэффициента а.
  2. Расчет усредненного коэффициента фср
  1. Определение коэффициента ω (таблица 19 )
  1. Расчет силы, воздействующей на сечение
  2. Определение устойчивости

Кдв – коэффициент длительного воздействия

R – сопротивление кладки сжатию, можно определить по таблице 2 , в МПа

Пример расчета прочности кладки

— параметры кладки (глиняный кирпич, изготовленный методом пластического прессования, цементно-песчаный раствор, марка кирпича — 100, марка раствора — 50)

— нагрузка (Н) – 1000 кН

  1. По таблице 15 определяем коэффициент а.
  1. Коэффициент изгиба (таблица 18 ).
  1. Высота сжатой части
  1. Площадь сжатой части сечения
  1. Гибкость сжатой части
    Расчет силы, воздействующей на сечение

Для определения действующей нагрузки необходим расчет веса всех элементов конструкции, оказывающих воздействие на проектируемый участок здания.

  1. Определение устойчивости

Условие выполнено, прочность кладки и прочность её элементов достаточна

Недостаточное сопротивление простенка

Что делать, если расчетное сопротивление простенков давлению недостаточно? В этом случае необходимо укрепление стенки при помощи армирования. Ниже приведён пример анализа необходимой модернизации конструкции при недостаточном сопротивлении сжатию.

Для удобства можно воспользоваться табличными данными.

В нижней строке представлены показатели для стенки, армированной проволочной сеткой диаметра 3 мм, с ячейкой 3 см, класса В1. Армирование каждого третьего ряда.

МаркаШирина, см
кирпичраствор255177100116142168194220246272298
Простая кладка1005061319252944526068768492
Армированная кладка1005011233444517992107122136151165

Прирост прочности составляет около 40 %. Обычно данное сопротивление сжатию оказывается достаточным. Лучше сделать подробный анализ, подсчитав изменение прочностных характеристик в соответствии с применяемым способом усиления конструкции.

Ниже приведён пример подобного вычисления

Пример расчета усиления простенков

Исходные данные – см. предыдущий пример.

  • высота этажа — 3,3 м;
  • толщина стены– 0,640 м;
  • ширина кладки 1,300 м;
  • типовые характеристики кладки (тип кирпичей – глиняные кирпичи, изготовленные методом прессования, тип раствора – цементный с песком, марка кирпичей — 100, раствора — 50)

Нагрузка пусть будет равной Н

В этом случае условие У>=Н не выполняется (1,113<1,5).

Требуется увеличить сопротивление сжатию и прочность конструкции.

Коэффициент усиления

т.е. надо увеличить прочность конструкции на 34,8%.

Усиление железобетонной обоймой

Усиление производится обоймой из бетона В15 толщиной 0,060 м. Вертикальные стержни 0,340 м2, хомуты 0,0283 м2 с шагом 0,150 м.

Размеры сечения усиленной конструкции:

При таких показателях условие У>=Н выполняется. Сопротивление сжатию и прочность конструкции достаточны.

Ссылка на основную публикацию