Регулятор температуры своими руками: принцип работы, схема включения и выключения

Как сделать термореле для отопления своими руками

Среди многочисленного ассортимента полезных приборов, которые приносят в нашу жизнь комфорт, есть большое количество тех, которые можно сделать своими руками. К этому числу можно отнеси и терморегулятор, который включает или отключает нагревательные и холодильные оборудования в соответствии с определенной температурой, на которую он установлен. Такое устройство отлично подойдет на период холодной погоды, например для подвала, где нужно хранить овощи. Так как же сделать терморегулятор своими руками, и какие детали для этого понадобятся?

Терморегулятор своими руками: схема

Про конструкцию термостата можно сказать, что она не особа сложна, именно по этой причине большинство радиолюбителей начинают свое обучение именно с этого прибора, а так же именно на нем оттачивают свои навыки и мастерство. Схем прибора можно найти очень большое количество, но самой распространенной является схема с применением, так называемого компаратора.

Для того чтобы делать терморегулятор, сперва нужно составить схему устройства

Данный элемент имеет несколько входов и выходов:

  • Один вход отвечает подачу эталонного напряжения, которое отвечает необходимой температуре;
  • Второй получает напряжения от датчика температуры.

Сам компаратор принимает все поступающие показания и сравнивает их. В случае если будет генерировать сигнал на выходе, то он включит реле, которое подаст ток на обогревательный или холодильный аппарат.

Какие детали понадобятся: терморегулятор своими руками

Для датчика температуры чаще всего используют терморезистор, это элемент который регулирует электрическое сопротивление в зависимости от температурного показателя.

Так же часто применяют полупроводниковые детали:

На их характеристики температура должна оказывать такое же влияние. То есть при нагреве должен увеличиваться ток транзистора и при этом он должен престать работать, не смотря на входящий сигнал. Нужно учесть, что такие детали обладаю большим недостатком. Слишком сложно провести калибровку, говоря точнее, будет трудно привязать эти детали к некоторым датчикам температуры.

Однако на данный момент промышленность не стоит на месте, и вы можете увидеть приборы из серии 300, это LM335, которым все чаще рекомендуют воспользоваться специалисты и LM358n. Не смотря на очень низкую стоимость, данная деталь занимает первую позицию в маркировках и ориентируется на сочетание с бытовой техникой. Стоит упомянуть, что модификации этой детали LM 235и 135 успешно применяются в военных сферах и промышленности. Включая в свою конструкцию около 16 транзисторов, датчик способен работать в качестве стабилизатора, а его напряжение будет полностью зависеть от температурного показателя.

Зависимость заключается в следующем:

  1. На каждый градус будет приходиться около 0, 01 В, если ориентироваться на Цельсий, то на показатель 273 результат на выходе составит 2, 73В.
  2. Диапазон работы ограничивается в показателе от -40 до +100 градусов. Благодаря таким показателям, пользователь полностью избавляется от регулирований методом проб и ошибок, а требуемая температура будет в любом случае обеспечена.

Так же кроме датчика температур вам потребуется компаратор, лучше всего приобрести LM 311, который выпускает тот же производитель, потенциометр для того чтобы сформировать эталонное напряжение и выходную установку чтобы включать реле. Не забудьте приобрести блок питания и специальные индикаторы.

Регулятор температуры своими руками: питание и нагрузка

Что касается подключения LM 335 то оно должно быть последовательным. Все сопротивления необходимо подобрать так, чтобы общая величина тока, который проходит через термодатчик соответствовала показателям от 0,45 мА до 5 мА. Превышения отметки допускать нельзя, так как датчик будет перегреваться, и показывать искаженные данные.

Дополнительно при изготовлении терморегулятора нужно учитывать его питание и нагрузку

Запитка терморегулятора может происходить несколькими способами:

  • С помощью блока питания с ориентировкой на 12 В;
  • С помощью любого другого устройства, питание которого не превышает вышеуказанный показатель, но при этом ток, протекающий через катушку не должен превышать 100 мА.

Еще раз напомним о том, что показатель тока в цепи датчика не должен превышать 5 мА, по этой причине придется использовать транзистор с большой мощностью. Лучше всего подойдет КТ 814. Конечно, если вы хотите избежать применения транзистора, можно использовать реле с меньшим уровнем тока. Он сможет работать от напряжения в 220 В.

Автоматическая регулировка тепла в помещении

Для чего это нужно

Одинокий дом зимой

  • Самым распространённым на территории Российской Федерации является централизованное отопление или автономное, на газовых котлах. Но такая, с позволения сказать, роскошь, доступна далеко не во всех районах и местностях. Причины тому самые банальные – отсутствие ТЭЦ или центральных котельных, а так же газовых магистралей поблизости.
  • Приходилось ли вам когда-либо побывать отдалённом от густонаселённых районов жилом доме, насосной или метеостанции в зимнюю пору, когда единственным средством сообщения являются сани с дизельным двигателем? В таких ситуациях очень часто устраивают отопление своими руками при помощи электричества.

Автономное отопление электричеством с использованием ЭОУ

  • Для небольших помещений, например, одна комната дежурного на насосной станции, достаточно масляного радиатора отопления – его хватит для самой суровой зимы, но для большей площади уже потребуется отопительный котёл и система радиаторов. Чтобы сохранить нужную температуру в котле, предлагаем вашему вниманию самодельное регулирующее устройство.

Температурный датчик

  • В этой конструкции не нужны терморезисторы или различные датчики типа ТСМ, здесь вместо них задействован биполярный обыкновенный транзистор. Как и всех полупроводниковых приборов, его работа в большой степени зависит от окружающей среды, точнее, от её температуры. С повышением температуры ток коллектора возрастает, а это негативно сказывается на работе усилительного каскада – рабочая точка смещается вплоть до искажения сигнала и транзистор попросту не реагирует на входной сигнал, то есть, перестает работать.

  • Диоды тоже относятся к полупроводникам, и повышение температуры отрицательно сказывается и на них. При t25⁰C «прозвонка» свободного кремниевого диода покажет 700мВ, а у перманентного – около 300мВ, но если температура повышается, то соответственно будет понижаться прямое напряжение прибора. Так, при повышении температуры на 1⁰C напряжение будет понижаться на 2мВ, то есть, -2мВ/1⁰C.

  • Такая зависимость полупроводниковых приборов позволяет использовать их в качестве температурных датчиков. На таком отрицательном каскадном свойстве с фиксированным базовым током и основана вся схема работы терморегулятора (схема на фото вверху).
  • Температурный датчик смонтирован на транзисторе VT1 типа КТ835Б, нагрузка каскада – резистор R1, а режим работы по постоянному току транзистора задают резисторы R2 и R3. Чтобы напряжение на транзисторном эмиттере при комнатной температуре было 6,8В, фиксированное смещение задаётся резистором R3.

Совет. По этой причине на схеме R 3 помечен знаком * и особой точности здесь добиваться не следует, только бы не было больших перепадов. Эти измерения можно провести относительно транзисторного коллектора, соединённым источником питания с общим приводом.

  • Транзистор p-n-p КТ835Б подобран специально, его коллектор соединяется с металлической корпусной пластинкой, имеющей отверстие для крепления полупроводника на радиатор. Именно за это отверстие прибор крепится к пластине, к которой ещё прикреплён подводной провод.
  • Собранный датчик крепиться к трубе отопления при помощи металлических хомутов, и конструкцию не нужно изолировать какой—либо прокладкой от трубы отопления. Дело в том, что коллектор соединён одним проводом с источником питания – это значительно упрощает весь датчик и делает контакт лучше.

Компаратор

Принципиальная схема компаратора

  • Компаратор, смонтированный на операционный усилитель ОР1 типа К140УД608, задаёт температуру. На инвертируемый вход R5 подаётся напряжение с эмиттера VT1, а через R6 – на неинвертируемый вход поступает напряжение с движка R7.
  • Такое напряжение определяет температуру для отключения нагрузки. Верхний и нижний диапазон для установки порога на срабатывание компаратора задаются при помощи R8 и R9. Нужный постерезис срабатывания компаратора обеспечивает R4.

Управление нагрузкой

Малогабаритное реле (16A)

  • На VT2 и Rel1 сделано устройство управления нагрузкой и индикатор режима работы терморегулятора находится здесь же – красный цвет при нагреве, а зелёный – достижение необходимой температуры. Параллельно обмотке Rel1 включен диод VD1 для защиты VT2 от напряжения, вызванного самоиндукцией на катушке Rel1 при отключении.

Совет. На рисунке выше видно, что допустимая коммутация тока реле 16A, значит, допускает управление нагрузкой до 3кВт. Используйте прибор для мощности 2-2,5кВт, чтобы облегчить нагрузку.

Блок питания

Блок питания для терморегулятора

  • Произвольная инструкция позволяет для настоящего терморегулятора в виду его небольшой мощности задействовать в качестве блока питания дешёвый китайский адаптер. Также можно самому собрать выпрямитель на 12В, с током потребления схемы не более 200мА. Для этой цели сгодится трансформатор мощностью до 5Вт и выходом от 15 до 17В.
  • Диодный мостик сделан на диодах 1N4007, а стабилизатор на напряжения на интегральном типа 7812. В виду небольшой мощности устанавливать стабилизатор на батарею не требуется.

Наладка терморегулятора

Настольная лампа с абажуром из металла

  • Для проверки датчика можно использовать самую обыкновенную настольную лампу с абажуром из металла. Как было отмечено выше, комнатная температура позволяет выдерживать напряжение на эмиттере VT1 около 6,8В, но если повысить её до 90⁰C, то напряжение упадёт до 5,99В. Для замеров можно использовать обычный китайский мультиметр с термопарой типа DT838.
  • Компаратор работает следующим образом: если напряжение термодатчика на инвертирующем входе выше напряжения на неинвертирущем, то на выходе оно будет равнозначным с напряжением источника питания – это будет логическая единица. Поэтому VT2 открывается и реле включается, перемещая релейные контакты в режим нагрева.
  • Температурный датчик VT1 греется по мере нагревания отопительного контура и с повышением температуры понижается напряжение на эмиттере. В тот момент, когда оно опускается немного ниже напряжения, которое задано на движке R7, получается логический ноль, что приводит к запиранию транзистора и отключению реле.
  • В это время напряжение на котёл не поступает и система начинает остывать, что также влечёт за собой остывание датчика VT1. Значит, напряжение на эмиттере повышается и как только оно переходит границу, установленную R7, реле запускается заново. Такой процесс будет повторяться постоянно.
  • Как вы понимаете, цена такого устройства невысока, зато позволяет выдерживать нужную температуру при любых погодных условиях. Это очень удобно в тех случаях, когда в помещении нет постоянных жителей, следящих за температурным режимом, или когда люди постоянно сменяют друг друга и к тому же заняты работой.

Самодельный терморегулятор: пошаговая инструкция

Если вы приобрели все необходимые составляющие для сборки, осталось рассмотреть подробную инструкцию. Рассматривать будем на примере датчика температуры рассчитанного на 12В.

Самодельный регулятор температуры собирается по следующему принципу:

  1. Подготавливаем корпус. Можно использовать старые оболочки от счетчика, например от установки «Гранит-1».
  2. Схему подбираете ту, которая вам больше понравится, но можно и сориентироваться и на плату от счетчика. Прямой ход с пометкой «+» необходим для подключения потенциометра, Инверсионный вход с о будет служить для подключения термодатчика. Если так случилось, что напряжение на прямом входе будет выше требуемого, на выходе установится высокая отметка и транзистор начнет подавать питание на реле, а оно в свою очередь на нагревательный элемент. Как только напряжение на выходе превысит допустимую отметку – реле отключится.
  3. Для того чтобы терморегулятор срабатывал вовремя и перепады температур были обеспечены, потребуется сделать с помощью резистора связь отрицательного типа, которая образуется между прямым входом и выходом на компараторе.
  4. Что касается трансформатора и его питания, то здесь может понадобиться индукционная катушка от старого электрического счетчика. Для того чтобы напряжение соответствовало показателю в 12 вольт, вам нужно будет сделать 540 витков. Уместить их получится только в том случае, если диаметр провода будет не более 0,4 мм.
Читайте также:  Подготовка стен под шпатлевку: правила

Вот и все. В этих небольших действиях и заключается вся работа по созданию терморегулятора своими руками. Возможно, самому без определенных навыков сделать его сразу и не получится, однако с опорой на фото и видео инструкции вы сможете испытать все свои умения.

Благодаря простой конструкции, самостоятельно созданный термоконтроллер может быть использован где угодно.

Например:

  • Для теплого пола;
  • Для погреба;
  • Котла отопления;
  • Может заняться регулировкой температуры воздуха;
  • Для духовки;
  • Для аквариума, где будет контролировать температурный показатель воды;
  • Для того чтобы контролировать температурное значение насоса электрокотла (его включения и отключение);
  • И даже для автомобиля.

Не обязательно использовать цифровой, электронный или механический покупной термовыключатель. Купив недорогое термореле, сделать регулировку мощности на симисторе и термопаре и ваш самодельный аппарат будет работать не хуже покупного.

Точный термометр

Применение в качестве датчиков полупроводниковых диодов и транзисторов характеризуется сложностью калибровки показаний, что в итоге приводит к погрешности результата измерений. Поэтому для получения точного результата в качестве измерителя применяется бифилярно намотанная катушка из тонкого проводника, размещённая в цилиндре, имеющем размеры порядка 4×20 мм.

Основой конструкции является микросхема ICL707 и светящийся индикатор. Питание можно подавать от любого источника с выходной амплитудой 12 В. На DA3 собран нормирующий преобразователь, изменяющий своё выходное напряжение в зависимости от сигнала, поступаемого с датчика.

Настройка заключается в выставлении на 36 ноге микросхемы напряжения, равного одному вольту. Делается это с помощью резисторов R3 и R4. Вместо датчика подключают резистор на 100 Ом. Изменением сопротивления R14 устанавливают нули на цифровом индикаторе. После чего устройство готово к измерениям.

Соблюдение температурного режима является очень важным технологическим условием не только на производстве, но и в повседневной жизни. Имея столь большое значение, этот параметр должен чем-то регулироваться и контролироваться. Производят огромное количество таких приборов, имеющих множество особенностей и параметров. Но сделать терморегулятор своими руками порой куда выгоднее, нежели покупать готовый заводской аналог.

Терморегулятор своими руками

Для автоматического поддержания температурного режима можно создать терморегулятор своими руками. Качественная самоделка будет выполнять свои функции не хуже, чем фабричный аналог. После тщательного изучения процесса сборки модернизация и ремонт не вызовут затруднений.

Терморегулятор холодильника

Понятие о температурных регуляторах

Изделия этой категории применяют для решения разных задач. По соответствующей настройке температурного порога подают питание (отключают):

  • отопление в погребе;
  • нагрев паяльной станции;
  • циркуляционный насос котла.

Из приведенных примеров понятны базовые требования к точности, которую должна обеспечить подходящая схема терморегулятора. В некоторых ситуациях необходимо поддержание заданного уровня не ниже, чем ±1C°. Для контроля рабочих параметров нужна оперативная индикация. Существенное значение имеют нагрузочные способности.

Перечисленные особенности поясняют назначение типовых функциональных узлов:

  • значение температуры фиксируют специализированным датчиком (резистором, термопарой);
  • показания анализирует микроконтроллер или другое устройство;
  • исполнительный сигнал поступает на электронный (механический) переключатель.

К сведению. Кроме рассмотренных частей, схема термореле может содержать дополнительные компоненты для подачи питания на электронагреватель, другую мощную нагрузку.

Принцип работы

Любая схема термостата действует на одинаковых принципах. Информация о температуре сравнивается с установленным значением. Пересечение определенного уровня активизирует исполнительное устройство для коррекции контролируемого параметра нужным образом.

Виды

В простейшем варианте (реле холодильника) применяют механический переключатель. Для более точной регулировки (обороты двигателя) используют не только микроэлектронику, но и специализированное программное обеспечение.

Терморегулятор на трех элементах

Чтобы сделать простой терморегулятор своими руками схема для блока питания персонального компьютера подходит лучше других вариантов.

Регулятор вентилятора для компьютерного БП

Термистором измеряют температуру в контрольной точке. Потенциометром устанавливают оптимальное значение для включения вентилятора. Изменять обороты данная схема не способна. Подключает индуктивную нагрузку MOSFET транзистор. Допустимо применение аналога с подходящими силовыми характеристиками.

Терморегуляторы для котлов отопления

Регулятор температуры своими руками можно сделать в рамках проекта модернизации старого котла. Не имеет значения вид топлива, хотя проще обеспечить хороший результат с применением газового оборудования.

Схема термостата с индикацией показаний на LCD экране

Цифровой терморегулятор

В этом примере разработчики создавали устройство поддержания температурного режима в хранилище фруктов (овощей). Для анализа поступающих данных выбрана микросхема со следующими блоками:

  • таймеры;
  • генератор;
  • два компаратора;
  • модули обмена, сравнения и передачи данных.

При соответствующем положении переключателей светодиодная матрица показывает актуальное значение температуры или контрольный уровень. Кнопками в пошаговом режиме устанавливают нужный порог срабатывания.

 Схема с регулировкой гистерезиса

Самодельный регулятор температуры

Создать функциональный термостат своими руками не слишком сложно. Тем не менее, надо реалистично оценивать собственные возможности. Следующие инструкции помогут принять правильное решение.

Простейшая схема

Чтобы исключить лишние трудности, применяют схему с блоком питания без трансформатора. Для выпрямления питающего напряжения используют обычный диодный мост. Необходимый уровень постоянной составляющей поддерживают стабилитроном. Конденсатором устраняют броски.

Типовой делитель подойдет для контроля напряжения. В одном плече устанавливают резистор, который реагирует на изменение температуры. Для управления исполнительным устройством подойдет реле.

Прибор для помещения

Это устройство можно использовать для поддержания температурного режима в мини-теплице, другом ограниченном объеме. Основной элемент – микросхема операционного усилителя, которая включена в режиме сравнения напряжений. Точную и грубую настройку порога срабатывания выполняют с помощью резисторов R5 и R4, соответственно.

Терморегулятор для инкубатора

На микросхеме LM 311

Этот вариант предназначен для подключения электрических теплых полов, других мощных нагрузок. Следует обратить внимание на повышенную надежность изделия, которая обеспечена гальванической развязкой цепей со слабыми и сильными токами.

Схема для подключения мощной нагрузки

Необходимые материалы и инструменты

В некоторых ситуациях понадобятся навыки изготовления сложной печатной платы. Простейшие схемы собирают за несколько минут с применением паяльника и технологии навесного монтажа. До выполнения рабочих операций необходимо приобрести:

  • комплектующие детали;
  • расходные материалы;
  • измерительную аппаратуру.

Список покупок составляют на основе выбранной электрической схемы. Для защиты устройства от неблагоприятных внешних воздействий и улучшения внешнего вида создают соответствующий корпус.

Достоинства и недостатки

Плюсы и минусы отдельных схем оценивают с учетом реальных условий эксплуатации. Иногда выгодно затратить время и деньги на стадии реализации идеи с целью продления срока службы готового изделия. Нет смысла создавать самоделку, если фабричный аналог с официальными гарантиями стоит дешевле.

Как грамотно установить

Чтобы продлить срок службы терморегулятора, пользуются следующими рекомендациями:

  • не устанавливают электронику без дополнительной защиты на открытом воздухе, в помещениях с повышенным уровнем влажности;
  • при необходимости в неблагоприятную среду выносят контрольный датчик;
  • исключают расположение регулятора напротив тепловых пушек, других «генераторов» холода или тепла;
  • для повышения точности выбирают место без активных конвекционных потоков.

Как отремонтировать

Самодельный термодатчик своими руками восстановить нетрудно, так как известна технология проверки (настройки). Инструкции по ремонту фабричных изделий можно найти на официальном сайте производителя.

Видео

Простой терморегулятор своими руками

Огромное количество электрических приборов, используемых в быту и промышленности, основывают свою работу на определении уровня температуры окружающей среды. Измерительный элемент в них представляет собой датчик температуры, срабатывающий при нагревании или охлаждении до установленного уровня. Их можно приобрести в большинстве магазинов, ими комплектуются духовки, контроллеры и прочие устройства, но гораздо интереснее изготовить терморегулятор своими руками.

Простой терморегулятор

Пример простого терморегулятора

Далее мы рассмотрим принцип действия и варианты изготовления такой самоделки.

Немного теории

Любой терморегулятор конструктивно включает в себя три основных блока:

  • измерительный;
  • логический;
  • исполнительный.

Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:

Датчик из полуплеча резисторов

Рис. 1. Датчик из полуплеча резисторов

На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.

На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.

Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:

Принципиальная схема терморегулятора

Рис. 2. Принципиальная схема терморегулятора

Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.

При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.

Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.

Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:

  • для контроля работы электрического отопления по температурным показаниям в помещении;
  • для установки уровня температуры в самодельном инкубаторе;
  • при подключении теплого пола для контроля его работы;
  • для установки температурного диапазона работы двигателя, с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
  • для паяльных станций или ручных паяльников;
  • в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
  • в духовках, печах как бытового, так и промышленного назначения.
Читайте также:  Описание газобетонных блоков

Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.

Обзор схем

В зависимости от типа элементов, входящих в состав терморегулятора, различают механические и цифровые терморегуляторы. Работа первых основана на срабатывании реле, вторые имеют электронный блок, управляющий процессами. Примеры работы нескольких схем рассмотрим далее.

Схема терморегулятора №1

Рис. 3. Схема терморегулятора №1

На приведенной схеме измерение происходит за счет резисторов R1 и R2, при температурных колебаниях переменный резистор R2 изменит величину падения напряжения. После чего через усилитель терморегулятора, представленный парой транзисторов, начнется протекание электротока через катушку реле K1.

Когда величина тока в соленоиде создаст магнитный поток достаточной силы, сердечник притянется и переключит контакты в другое положение. Недостатком такого терморегулятора является наличие магнитопроводящих частей, которые из-за гистерезиса вносят дополнительную поправку на температуру помимо измерительного органа.

Схема терморегулятора №2

Рис. 4. Схема терморегулятора №2

Данный терморегулятор, в отличии от механического термостата, не использует подключение реле, поэтому является более точным. Его применение оправдано в тех ситуациях, когда несколько градусов могут сыграть весомую роль, к примеру, при контроле температуры нагрева двигателя или в инкубаторе.

Здесь изменение температурного режима фиксируется резистором R5, благодаря которому терморегулятор изменяет электрические параметры работы. Для сравнения и усиления разницы поступающего с полуплеч электрического параметра применяется микросхема К140УД7.

Для контроля нагрузки в схеме устанавливается тиристор VS1, в данном примере терморегулятора ограничение составляет 150Вт, но при желании может подбираться и другой параметр. Но следует учитывать, что эксплуатация тиристора в качестве ключа приводит к его нагреванию, поэтому с увеличением мощности необходимо установить радиатор для лучшей теплоотдачи.

Создаем простой терморегулятор

При ремонте бытовой электротехники вы могли сталкиваться с ситуацией, когда со строя выходил терморегулятор. Хоть это и небольшая микросхема, устанавливаемая для контроля величины нагрева или охлаждения чего-либо.

Увы, стоимость такого элемента заводского изготовления довольно высока, поэтому куда выгоднее собрать терморегулятор самому. Схема достаточно простого самодельного терморегулятора приведена на рисунке ниже.

Схема простейшего терморегулятора

Рис. 5. Схема простейшего терморегулятора

Для его изготовления вам понадобится:

  • понижающий трансформатор с 220 на 12 В;
  • шесть диодов (в рассматриваемом примере используются IN4007);
  • конденсаторы на 47 мкФ, 1 мФ и 2 мФ;
  • микросхема для стабилизатора на 5В;
  • транзистор (в рассматриваемом примере это КТ814А);
  • стабилитрон с регулируемым параметром (TL431);
  • резистивные элементы на 4,7; 160, 150 и 910 кОм;
  • резистор с изменяемым сопротивлением на 150 кОм;
  • термозависимый резистор 50 кОм;
  • светодиод;
  • электромагнитное реле 100 мА с питающим напряжением 12В (в рассматриваемом примере используется автомобильный вариант);
  • кнопка и корпус.

Процесс изготовления состоит из таких этапов:

В данном случае клеммник взят со старого прибора, располагавшегося в корпусе.

  • Подключите все отдельно размещенные элементы к плате и закройте корпусом.

После сборки терморегулятора его можно установить в любое место, к примеру, для обогрева и подключить в цепь питания электрического котла. В случае, когда радиаторы отопления нагреют помещение до установленной температуры, контакты реле разорвут цепь и прекратят электроснабжение. При остывании цифрового термометра, снова произойдет включение отопления и снова пойдет нагрев. Если вас не устраивает температурный режим, его можно изменить настройкой датчика.

Регулятор температуры: особенности изготовления своими руками

Регулятор температуры

Часто для работы какого-либо устройства или целой системы необходимо поддерживать определённый температурный режим. Это актуально при работе контуров отопления или охлаждения, построении устройств типа «инкубатор». Одним из простых приборов, позволяющих контролировать температуру, является термореле. Такое приспособление возможно приобрести в специализированных торговых точках, но можно изготовить такой регулятор температуры и своими руками.

Назначения и характеристики

Регулятор температуры своими руками

В основе работы термореле лежит способность устройства управлять включением и выключением узлов схемы в зависимости от изменения температуры. Фактически — это приспособление, располагающееся между управляемыми элементами и датчиками температуры. Конструктивно прибор представляет собой электронную схему или же устройство, выполненное из специального материала.

Первый вид предполагает использование выносных или встроенных датчиков, а второй — использует свойства различных материалов изменять свои параметры при изменении характеристик электрической сети. То есть контроль происходит контактным или бесконтактным способом. Но несмотря на принципиальные различия, суть работы терморегуляторов одинаков. Регистрируя изменение температуры, устройство разрывает или подсоединяет подключённые к нему узлы аппаратуры или оборудования в автоматическом режиме.

Благодаря их применению, температура воздуха, воды, поверхностей различных приборов и радиоэлементов имеет стабильное значение.

Для каждой среды используются свои особенности размещения устройства. Его точность срабатывания зависит не только от качества исполнения самого регулятора, но и правильного размещения.

Выпускаются терморегуляторы разных видов. Классифицировать их можно по следующим признакам:

Регулятор температуры своими руками схема

  1. По назначению. Разделяются на внутренние и наружные.
  2. Способу установки. Существуют независимые терморегуляторы, как способные располагаться на любой поверхности, так и размещаемые только внутри оборудования.
  3. Функциональностью. Терморегуляторы могут регистрировать только один сигнал или сразу несколько. При этом второго типа называются многоканальными. Они могут поддерживать значение температуры как на нескольких устройствах одновременно, используя независимые каналы, так и только на одном.
  4. Способу настройки. Управление режимами работы и настройка приспособления может быть механической, электронной или электромеханической.
  5. Гистерезису. В терморегуляторах под ним понимают значение температуры, при которой сигнал изменяется на противоположный знак, а также явление, когда происходит задержка переключения сигнала в зависимости от величины влияния. Именно он даёт возможность снизить частоту переключения, например, при повышении температуры в нагревателе. Но при этом следует понимать, что большая величина гистерезиса приводит к температурному скачку.
  6. Виду термодатчиков. Подключаемые к терморегуляторам датчики могут быть контактного и бесконтактного действия. Например, использующие в работе инфракрасное излучение или свойство биметаллической пластины.

Параметры приспособления

Как и любое оборудование, регуляторы температуры характеризуются набором параметров. От них в первую очередь зависит точность срабатывания устройства. Зависят эти характеристики не только от качества применяемых при построении схемы терморегулятора элементов, но и реализации системы, позволяющей избегать влияния посторонних факторов. К основным характеристикам относят:

Схема терморегулятора

  1. Время переключения. Зависит от схемы реализации регулятора и способа установки датчика, определяющего его инерционность.
  2. Регулируемый диапазон. Устанавливает граничные значения температурного режима, в котором может происходить работа устройства.
  3. Напряжение питания. Это значение рабочего напряжения, необходимого для нормальной работы устройства.
  4. Активная нагрузка. Показывает, какой максимальной мощностью может управлять регулятор температуры.
  5. Класс защиты. Характеризует безопасность прибора. Обозначается согласно международной классификации по электрической безопасности.
  6. Система сигнализации. В регуляторе может использоваться светодиодный сигнализатор или жидкокристаллический экран. Ориентируясь на него, пользователь может сразу видеть, в каком режиме работает прибор контроля.
  7. Рабочая температура. Обозначает диапазон, в рамках которого обеспечивается правильная работа терморегулятора.
  8. Вид термодатчика. Являясь чувствительным элементом, он выступает в качестве индикатора температуры, отправляя данные на контроллер. Такие термодатчики на включение и выключение устройства бывают разных типов и конструкций, а также отличаются по способу передачи данных.

Кроме этого, к качественным характеристикам устройства относят: удобство использования, габариты, дополнительные возможности, общий вид.

Поэтому собирая терморегулятор своими руками, для получения законченного вида устройства желательно продумывать не только схему приспособления, но и корпус, в котором он будет располагаться.

Принцип работы

Схема термореле

В общем виде терморегулятор можно представить в виде блок-схемы, состоящей из датчика температуры, блока обработки и регулирующего механизма. В основе работы механического теплового реле лежит способность биметаллической пластины изменять свою форму в зависимости от температуры. Для её изготовления используются два материала, жёстко скреплённые между собой с разным температурным коэффициентом расширения.

При нагреве такой пластины происходит её изгиб. Именно это свойство и используется при производстве тепловых реле. Во время деформирования пластинка замыкает или размыкает контактную группу, вследствие чего разрывается или восстанавливается электрический контакт. Такое реле может применяться в цепях как переменного, так и постоянного тока, а выбор граничной температуры в них обычно устанавливается с помощью механического регулятора.

Кроме этого, существуют твердотельные реле (электронные). В их конструкции уже нет движущихся и механических частей, а используется электронная схема, вычисляющая изменения температуры.

В качестве основных элементов таких приборов является термистор и микропроцессор. В первом происходит изменение электрических параметров при колебаниях температуры, а второй обрабатывает и в зависимости от запрограммированного алгоритма коммутирует контактные группы.

Схемотехника регуляторов

Из-за сложности настройки механического реле самостоятельное его изготовление практически невозможно, поэтому радиолюбители изготавливают твердотельные регуляторы. На сегодняшний день известно большое количество схем термореле разного класса. Так что подобрать подходящую для возможного повторения не составит сложности.

Но перед тем как приступить к самостоятельному изготовлению терморегулятора, необходимо подготовить ряд инструментов и материалов. Для этого, кроме электрической схемы и необходимых согласно ей радиоэлементов, понадобится:

  1. Паяльник или в случае использования сложных микроконтроллеров паяльная станция.
  2. Односторонний фольгированный стеклотекстолит. Если электрическая схема содержит большое количество радиоэлементов и относится к средней или высокой группе сложности, то изготовить её навесным монтажом не представляется возможным. Поэтому используется стеклотекстолит, на котором удобным методом, например, лазурно-утюжным или фотолитографией, наносится печатная схема будущего термореле.
  3. Мультиметр. Он необходим для настройки работы устройства и проверки правильности установки радиоэлементов.
  4. Мини-дрель. С помощью неё выполняют отверстия, в которые устанавливаются радиоэлементы.
  5. Рабочие материалы. К ним относятся: флюс, припой, спиртовой раствор, изолента или термоусадочные трубочки.

Последовательность действий при изготовлении сводится к следующему. На первом этапе выбирается схема и изучается её описание, доступность радиоэлементов. При этом не стоит забывать, что почти для каждой радиодетали существует аналог. Затем, изготавливается печатная схема, а по ней уже плата. На плату запаиваются радиоэлементы, коммутационные гнёзда и провода. Как только всё готово, производится тестовый запуск и в случае необходимости подстройка работы.

Простые устройства

Простейшее устройство, реагирующее на изменение температуры, можно собрать из нескольких сопротивлений и интегрального усилителя. Использующиеся резисторы представляют собой два полуплеча, образующие собой измерительную и опорную часть схемы. В качестве R2 используется термистор, то есть резистор, сопротивление которого меняется в зависимости от воздействующей на него температуры.

Терморегулятор своими руками

Интегральный усилитель LM393 работает в режиме компаратора, то есть сравнивает два сигнала, снимаемые с R1-R2 и R3-R4. Как только уровень сигнала на двух входах микросхемы сравняется, LM393 переключает нагрузку к питающей сети. В качестве нагрузки можно использовать вентилятор. Как только вентилятор охладит контролируемое устройство, уровень сигнала на втором и третьем входе компаратора снова начнёт различаться. Устройство снова переключит свои выходы, и питание прекратит поступать в нагрузку.

Несложную схему можно собрать и на тиристоре. В качестве её нагрузки можно использовать нагреватель, температуру которого и будет регулировать самодельный терморегулятор.

Эта схема может использоваться в инкубаторе или аквариуме.

Читайте также:  Почему гудит трансформатор

Термодатчики на включение выключение

В основе схемы также лежит способность компаратора сравнивать уровни напряжения на своих входах и в зависимости от этого открывать свои выходы. При одинаковом сигнале ток через транзистор VT1 не течёт, а значит, на управляющем выводе тиристора VS1 находится низкий уровень, и он закрыт. Появившееся напряжение на сопротивлении R8 приводит к его открытию. Запитывается схема через диод VD2 и R10. Для стабилизации питания используется стабилитрон VD1. Перечень и номиналы элементов приведены в таблице:

ОбозначениеНаименованиеАналог
R110 кОм
R222 кОм
R3100 кОм
R4 =R66,8 кОм
R51 кОм
R8470 Ом
R95,1 кОм
R1027 кОм
С10,33 мкФ
VT1КТ1172N6027
VD1КС212ЖBZX30C12
VD2КД1051N4004
VS1КУ208ГTAG307— 800

Термореле на микроконтроллере

Собрав такой термостат, его можно использовать совместно с отопительной системой, например, совместно с котлом. В основе конструкции используется микросхема DS1621, которая совмещает в себе термометр и термостат. Её цифровой ввод-вывод обеспечивает точность ±0,5 °C.

Термореле на включение

При использовании DS1621 в качестве термостата в её внутреннюю энергонезависимую память (EEPROM) помещаются данные о температуре, которую необходимо поддерживать. А также контрольные точки, по достижении которых температура повышается или понижается. Разница между ними образует гистерезис, при этом на третьем выводе микросхемы формируется логическая единица или ноль.

Данные в микросхему заносятся с помощью микроконтроллера, выполненного на ATTINY2313. Устройство может поддерживать температуру в диапазоне от 10 до 40 градусов. Управление термоэлементом котла осуществляется через тиристор. С помощью кнопки S1 осуществляется включение и выключение термометра. А кнопками S2 и S3 устанавливается температура. Светодиод HL1 сигнализирует о работоспособности прибора. Во время нагревания термоэлемента котла он мигает. В качестве трансформатора используется TAIWAN 110—230V 6−0−6V 150TA.

При программировании в Features необходимо выбрать: int. RC Osc. 4 MHz; Start-up time: 14 CK + 0 ms; [CKSEL=0010 SUT=00] и Brown-out detection disabled; [B0DLEVEL=111] поставить галочку на Serial program downloading (SPI) enabled; [SPIEN=0]. А также отметить фьюзы: SUT1, SPIEN, SUTO, CKSEL3, CKSEL2, CKSELO. Правильно собранное устройство работает сразу и в наладке не нуждается.

Простые терморегуляторы

Многим радиолюбителям известен так называемый “триггерный эффект” на пороге срабатывания термо-, фотореле, автоматического зарядного устройства и т.п. Устройство может сработать нормально десятки раз, но иногда бывает такой неприятный момент, когда исполнительное реле включится, сразу же выключится, опять включится и т.д. Такое явление может проявляться довольно длительное время – “подгорают” контакты реле, да и ресурс времени работы реле не безграничен. Если в схеме применены тиристоры, то при частом включении-выключении они могут греться и выходить из строя, а также давать помехи в питающую сеть. На рис.1 показана схема терморегулятора на реле, в котором такое вредное явление, как “триггерный эффект”, отсутствует.

Терморегулятор на реле

Предположим, что данный терморегулятор используют для регулировки температуры воздуха в инкубаторе. Если температура в инкубаторе ниже +38°С (выставляют переменным резистором R4), сопротивление терморезистора R3 сравнительно большое и компаратор на DA1 находится в режиме положительного насыщения, транзисторы VT1 и VT2 открыты, реле К1 притянуто, и происходит нагревание воздуха в инкубаторе. При достижении в инкубаторе температуры +38°С сопротивление терморезистора R3 становится меньше и компаратор перебрасывается в состояние отрицательного насыщения (на выходе потенциал общего провода), закрываются транзисторы VT1 и VT2, реле К1 отпускает. В связи с тем, что последовательно с резистором R1 включен резистор R2, который шунтируется нормально замкнутыми контактами реле К1, реле включается при одной температуре, а выключается при другой, т.е. поддерживается температура в инкубаторе в пределах, например, +37,5. 38°С. Необходимая разность температур обеспечивается подбором резистора R2. Таким образом, такое вредное явление, как “триггерный эффект”, в данной схеме терморегулятора отсутствует. Напряжение срабатывания реле К1 должно быть не ниже 10 В, контакты реле должны выдерживать коммутируемый переменный ток и быть рассчитаны на напряжение не менее 250 В. Печатная плата терморегулятора показана на рис.2.

Печатная плата терморегулятора

На рис.3 показана схема терморегулятора с тиристором в силовой части, которая также свободна от явления “триггерного эффекта”.

Терморегулятор с тиристором

Предположим, что данный терморегулятор также используют для инкубатора, необходимая температура воздуха в нем должна быть в пределах +38. 39°С (данный диапазон температур выставляют переменным резистором R4). На ОУ микросхемы DA1 выполнен двухпороговый компаратор. Если температура в инкубаторе ниже +38°С, сопротивление терморезистора R3 сравнительно большое, и оба компаратора находятся в состоянии положительного насыщения (уровень лог.”1″ на их выходах). На логических элементах DD1.2, DD1.3 построен RS-триггер. Если температура воздуха в инкубаторе ниже +38°С, на входе S RS-триггера присутствует лог.”0″ (после инвертора DD1.1), на входе R – лог.”1″, триггер находится в “единичном” состоянии (лог.”0″ на его инверсном выходе 4 DD1.3). При этом транзистор VT1 закрыт, на управляющий электрод тиристора VS1 подается положительный потенциал относительно его катода, тиристор открыт, нагревательный элемент Rн включен. При достижении температуры воздуха в инкубаторе +38°С сопротивление терморезистора R3 уменьшается, компаратор на DA1.1 перебрасывается из состояния положительного насыщения в состояние отрицательного насыщения, на его выходе устанавливается лог.”0″, на входе S триггера – лог.”1″, но триггер остается в “единичном” состоянии, нагревательный элемент RH включен. Когда температура воздуха в инкубаторе достигнет значения +39°С, лог.”0″ появится и на выходе компаратора DA1.2, который по входу R RS-триггера установит его в “нулевое” состояние. При этом на выводе 4 DD1.3 появится лог.”1″, которая откроет транзистор VT1, на управляющем электроде тиристора VS1 установится низкий потенциал относительно его катода, тиристор закроется, и нагреватель отключится от питающей сети. Когда температура воздуха в инкубаторе станет ниже +39°С, но выше +38°С, в состояние положительного насыщения установится компаратор DA1.2, но лог.”1″ на входе R триггера не изменит его нулевого состояния, и нагреватель по-прежнему будет отключен. И только при понижении температуры воздуха в инкубаторе ниже +38°С, в состояние положительного насыщения установится компаратор DА 1.1, на вход S триггера поступит лог.”0″, который включит в работу нагреватель Rн. Таким образом, температура в инкубаторе поддерживается в пределах +38. +39°С (необходимую разность температур достигают подбором сопротивления резистора R2), и явление “триггерного эффекта” в данной схеме терморегулятора отсутствует. Печатная плата терморегулятора показана на рис.4.

Печатная плата терморегулятора

При налаживании и эксплуатации устройства необходимо соблюдать осторожность и не касаться деталей, так как в схеме присутствует потенциал сети. Целесообразно для более точной и плавной регулировки температуры подобрать переменный резистор R4 (также и в схеме рис.1). Диоды VD1-VD4 можно исключить. В этом случае на нагревателе Rн будет только одна полуволна сетевого напряжения, т.е. при мощности 500 Вт на нагревателе будет выделяться 250 Вт, и значительно возрастет надежность и долговечность самого нагревателя. Напряжение на вторичной обмотке трансформатора Т1 должно быть в пределах 13. 16 В.

Простая и надёжная схема терморегулятора для инкубатора

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

TERMO_4

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать R3 можно по таблице ниже.

Ссылка на основную публикацию